「ゲノム編集」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
(同じ利用者による、間の13版が非表示)
2行目: 2行目:
<font size="+1">[https://researchmap.jp/koichitanaka 田中光一]</font><br>
<font size="+1">[https://researchmap.jp/koichitanaka 田中光一]</font><br>
''東京医科歯科大学難治疾患研究所''<br>
''東京医科歯科大学難治疾患研究所''<br>
DOI:<selfdoi /> 原稿受付日:2018年5月25日 原稿完成日:2018年7月23日<br>
DOI:<selfdoi /> 原稿受付日:2018年5月25日 原稿完成日:2018年7月23日 改訂版受付日:2019年5月8日 原稿完成日:2019年5月10日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科)
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科)
<br>
<br>
26行目: 26行目:


=== ツール ===
=== ツール ===
[[Image:ゲノム図2.png|thumb|right|400px|'''図2. ゲノム編集に用いられる部位特異的ヌクレアーゼの構造'''<br>'''A.'''  ZFN<br />'''B.''' TALEN<br />'''C.'''CRISPR/Cas8]]
[[Image:ゲノム図2.png|thumb|right|400px|'''図2. ゲノム編集に用いられる部位特異的ヌクレアーゼの構造'''<br>'''A.'''  ZFN<br />'''B.''' TALEN<br />'''C.''' CRISPR/Cas9]]
 ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[zinc-finger nuclease]] ([[ZFN]])、[[transcription activator-like effector nuclease]] ([[TALEN]])、[[clustered regularly interspaced short palindromic repeats]] ([[CRISPR]])/[[CRISPR-associated proteins]] ([[Cas]]) [[CRISPR]]/[[Cas9]]、以下[[CRISPR/Cas]]と略)などの部位特異的[[wj:ヌクレアーゼ|ヌクレアーゼ]]を用いる('''図2''')。
 ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[zinc-finger nuclease]] ([[ZFN]])、[[transcription activator-like effector nuclease]] ([[TALEN]])、[[clustered regularly interspaced short palindromic repeats]] ([[CRISPR]])/[[CRISPR-associated proteins]] ([[Cas]]) [[CRISPR]]/[[Cas9]]、以下[[CRISPR/Cas]]と略)などの部位特異的[[wj:ヌクレアーゼ|ヌクレアーゼ]]を用いる('''図2''')。


 1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つ[[FokI]]ヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。
 1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つ[[FokI]]ヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。
 
==== ZFN ====
 第一世代のZFNは、DNA結合ドメインとしてzinc fingerを持つ人工ヌクレアーゼで、1つのzinc fingerは3塩基を認識するので、3〜6個のzinc fingerを持つZFNは9〜18 base pair (bp)に特異的に結合し、一対で18〜36 bpの特異性でDNA二本鎖切断を導入する。
 第一世代のZFNは、DNA結合ドメインとしてzinc fingerを持つ人工ヌクレアーゼで、1つのzinc fingerは3塩基を認識するので、3〜6個のzinc fingerを持つZFNは9〜18 base pair (bp)に特異的に結合し、一対で18〜36 bpの特異性でDNA二本鎖切断を導入する。
 
==== TALEN ====
 第二世代のTALENは、DNA結合ドメインとして植物病原細菌の[[wj:キサントモナス属|''Xanthomonas''属]]が有するTALEを持つ人工ヌクレアーゼである。TALEのDNA結合ドメインは、1塩基を認識する34個のアミノ酸が一単位となり、それを15〜20単位持つTALENをセンス鎖、アンチセンス鎖それぞれに作製し、狙った標的部位にDNA二本鎖切断を導入する。
 第二世代のTALENは、DNA結合ドメインとして植物病原細菌の[[wj:キサントモナス属|''Xanthomonas''属]]が有するTALEを持つ人工ヌクレアーゼである。TALEのDNA結合ドメインは、1塩基を認識する34個のアミノ酸が一単位となり、それを15〜20単位持つTALENをセンス鎖、アンチセンス鎖それぞれに作製し、狙った標的部位にDNA二本鎖切断を導入する。
 
==== CRISPR/Cas ====
 第三世代のCRISPR/Casは、単独でDNA二本鎖切断活性を持つCasヌクレアーゼと標的配列特異的一本鎖ガイドRNAとの複合体を用い、狙った塩基配列にDNA二本鎖切断を導入する。
 第三世代のCRISPR/Casは、単独でDNA二本鎖切断活性を持つCasヌクレアーゼと標的配列特異的一本鎖ガイドRNAとの複合体を用い、狙った塩基配列にDNA二本鎖切断を導入する。


50行目: 50行目:
 約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、guide RNAの作製の簡便さ、guide RNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、[[wj:大腸菌|大腸菌]]、[[ヒト]]細胞から[[ゼブラフィッシュ]]に至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>。いまやヒトや[[サル]]を含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。
 約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、guide RNAの作製の簡便さ、guide RNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、[[wj:大腸菌|大腸菌]]、[[ヒト]]細胞から[[ゼブラフィッシュ]]に至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>。いまやヒトや[[サル]]を含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。


 ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」と「PAM配列の制約」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br>
 ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」、「PAM配列の制約」、「望ましくないオンターゲット変異」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br>
Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref><ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref>。
Nature Methods. 2018, 15(4):229-30. [https://doi.org/10.1038/nmeth.4664 [DOI<nowiki>]</nowiki>]</ref><ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. [https://doi.org/10.1101/154450 [DOI<nowiki>]</nowiki>]</ref>。


 在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>。xCas9は哺乳類細胞において、最も広範なPAM配列を認識する制約の少ないCasである。さらに機序は不明であるが、xCas9はオフターゲットの頻度も抑制し、Cas9の主要な欠点であるオフターゲットとPAM配列の制約の2つを回避できる理想的なゲノム編集ツールである。
 在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>。さらに、濡木らのグループは、SpCas9に7つのアミノ酸置換を導入し、NGをPAM配列として認識するSpCas9-NGを開発した<ref><pubmed> 30166441 </pubmed></ref>。野生型SpCas9はPAM配列としてNGGを要求するため、確率的にゲノムの1/16しか標的にできなかったが、SpCas9-NGはNGをPAM配列として認識するため、野生型の4倍のゲノム領域を標的とすることができる。Sp-Cas9は、培養細胞においてxCas9より高いDNA切断活性を持っている。
 
 従来、Cas9によるDNA二本鎖切断により誘導される標的部位での変異は20塩基未満の欠失・挿入であると考えられていた。しかし、ロングレンジPCR解析などにより、標的部位に大規模な欠失や逆位などの複雑な再編が起こることが報告された<ref><pubmed> 30010673 </pubmed></ref><ref><pubmed> 30837594 </pubmed></ref>。従って、ゲノム編集が目的通りに行われたかどうかは、サザンブロット解析などのにより慎重に行う必要がある。


==== CRISPR/Cpf1====
==== CRISPR/Cpf1====
61行目: 63行目:
#Cas9はDNA二本鎖を切断し平滑末端を形成するが、Cpf1は突出末端を形成する。
#Cas9はDNA二本鎖を切断し平滑末端を形成するが、Cpf1は突出末端を形成する。


 CRISPR/Cpf1システムは、ヒト細胞株やマウス受精卵のゲノム編集に応用され、CRISPR/Cas9システムよりオフターゲットの頻度が少ないことが報告されている<ref><pubmed>27347757</pubmed></ref><ref><pubmed>27272387</pubmed></ref>[12]
 CRISPR/Cpf1システムは、ヒト細胞株やマウス受精卵のゲノム編集に応用され、CRISPR/Cas9システムよりオフターゲットの頻度が少ないことが報告されている<ref><pubmed>27347757</pubmed></ref><ref><pubmed>27272387</pubmed></ref>。


==== CRISPR/dCAS9-BE====
==== CRISPR/dCAS9-BE====
 従来のゲノム編集は、標的のゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的DNAを編集する。
 従来のゲノム編集は、標的のゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的DNAを編集する。


 一方CRISPR/dCAS9-BEシステムは、DNAを切断することなく標的DNAの塩基を編集する方法である。ヌクレアーゼ活性を失活させたCas9(dCas9)に、脱アミノ化酵素である[[シチジンデアミナーゼ]]を融合させた塩基エディター(BE)を作成し、guide RNAにより狙ったゲノム部位に塩基エディターを働かせ、標的部位の[[wj:シトシン|シトシン]](C)を[[wj:チミン|チミン]](T)(あるいは[[wj:グアニン|グアニン]](G)を[[wj:アデニン|アデニン]](A))に置換する<ref><pubmed>27096365</pubmed></ref><ref><pubmed>27492474</pubmed></ref>。さらにDavid Liuのグループは、PACEを利用してDNAのAをG(あるいはTをC)に置換できる転移RNAのアデノシンデアミナーゼ変異体(アデニン塩基エディター(ABE))の作成に成功した<ref><pubmed>29160308</pubmed></ref>。dCas9と融合したBEあるいはABEを用いることにより、DNAの二本鎖切断を起こさずにDNAの4塩基全てを個別に置き換えられる。既知の遺伝性疾患の原因となる一塩基変異の約50%は、G-C塩基対からA-T塩基対への転移なので、CRISPR/dCas-ABEシステムは遺伝性疾患を根本的に治す可能性を持っている。
 一方CRISPR/dCAS9-BEシステムは、DNAを切断することなく標的DNAの塩基を編集する方法である。ヌクレアーゼ活性を失活させたCas9(dCas9)に、脱アミノ化酵素である[[シチジンデアミナーゼ]]を融合させた塩基エディター(BE)を作成し、guide RNAにより狙ったゲノム部位に塩基エディターを働かせ、標的部位の[[wj:シトシン|シトシン]](C)を[[wj:チミン|チミン]](T)(あるいは[[wj:グアニン|グアニン]](G)を[[wj:アデニン|アデニン]](A))に置換する<ref><pubmed>27096365</pubmed></ref><ref><pubmed>27492474</pubmed></ref>。さらにDavid Liuのグループは、PACEを利用してDNAのAをG(あるいはTをC)に置換できる転移RNAのアデノシンデアミナーゼ変異体(アデニン塩基エディター(ABE))の作成に成功した<ref><pubmed>29160308</pubmed></ref>。BEあるいはABEを用いることにより、DNAの二本鎖切断を起こさずにDNAの4塩基全てを個別に置き換えられる。既知の遺伝性疾患の原因となる一塩基変異の約50%は、G-C塩基対からA-T塩基対への転移なので、CRISPR/dCas-ABEシステムは遺伝性疾患を根本的に治す可能性を持っている。しかし、上記塩基編集ツールは、DNAのオフターゲット変異とRNAのオフターゲット変異を引き起こすことが報告された<ref><pubmed> 30819928 </pubmed></ref><ref><pubmed> 30995674 </pubmed></ref>。C-to-T塩基編集ツールにはDNAおよびRNAの大規模なオフターゲト変異が起こり、A-to-G塩基編集ツールにはRNAのオフターゲット変異が起こる。塩基編集ツールに関しても、デアミナーゼの改変や多様なデアミナーゼの探索など、オフターゲット活性の最小化が必要である。


===RNAの編集===
===RNAの編集===
134行目: 136行目:
 しかし従来のCRISPR/Cas9システムは、実験操作を簡便にするためcrRNAとtracrRNAを連結した一本鎖ガイドRNA(sgRNA)とCas9の2要素からなるシステムである('''図5''')。自然界の3要素システムの方が、2要素システムより、高い標的配列切断活性を持つことが報告されている。そこで筆者らは、sgRNAのかわりにcrRNAとtracrRNAを用い、Cas9蛋白質と組み合わせることで、ノックイン効率を向上できるのではないかと考えた。crRNAとtracrRNAを用いるもう一つの利点は、化学合成が可能になり、sgRNAの作製に必要な大腸菌での遺伝子組換え実験を省略できる点である。sgRNAの長さは約100塩基であるが、crRNA、tracrRNAは各々50塩基程度であり、化学合成が可能である。筆者らの改良したCRISPR/Cas9システムは、Cas9蛋白質と化学合成したcrRNAとtracrRNAの3要素からなる('''図5''')。このシステムは、大腸菌での遺伝子組換え実験を行うことなくゲノム編集が可能で、クローニングフリーCRISPR/Cas9システムと名づけた<ref name=Aida2015><pubmed>25924609</pubmed></ref>。
 しかし従来のCRISPR/Cas9システムは、実験操作を簡便にするためcrRNAとtracrRNAを連結した一本鎖ガイドRNA(sgRNA)とCas9の2要素からなるシステムである('''図5''')。自然界の3要素システムの方が、2要素システムより、高い標的配列切断活性を持つことが報告されている。そこで筆者らは、sgRNAのかわりにcrRNAとtracrRNAを用い、Cas9蛋白質と組み合わせることで、ノックイン効率を向上できるのではないかと考えた。crRNAとtracrRNAを用いるもう一つの利点は、化学合成が可能になり、sgRNAの作製に必要な大腸菌での遺伝子組換え実験を省略できる点である。sgRNAの長さは約100塩基であるが、crRNA、tracrRNAは各々50塩基程度であり、化学合成が可能である。筆者らの改良したCRISPR/Cas9システムは、Cas9蛋白質と化学合成したcrRNAとtracrRNAの3要素からなる('''図5''')。このシステムは、大腸菌での遺伝子組換え実験を行うことなくゲノム編集が可能で、クローニングフリーCRISPR/Cas9システムと名づけた<ref name=Aida2015><pubmed>25924609</pubmed></ref>。


 このクローニングフリーCRISPR/Cas9システムは、ガイドRNAの活性評価も簡便である。従来のような培養細胞を用いた実験は必要なく、試験管内で標的配列を含む[[PCR]]産物、Cas9蛋白質、crRNA、tracrRNAをインキュベートして電気泳動するだけで(''in vitro'' digestion assay:IDA)、その切断活性を調べることができる。クローニングフリーCRISPR/Cas9システムを用い、[[アクチン|ActB]] ([[β-actin]])遺伝子座に[[EGFP]](enhanced green fluorescent protein)を含む2.5 kbの外来遺伝子をノックインするマウスを作成したところ、およそ50%の新生仔マウスにEGFPが目的部位にノックインされていた。従来用いられてきたCas9 mRNAとsgRNAからなる2要素システムを用い対照実験を行ったところ、その効率は10%程度だった。このことからクローニングフリーCRISPR/Cas9システムは、外来遺伝子のノックイン効率を大幅に向上させることが明らかになった<ref name=Aida2015/>[30]。さらに作製したノックインマウスを野生型マウスと交配し、次世代への伝達効率を調べたところ、すべての系統から、50%の効率で次世代のノックインマウスが得られた。このことは、従来型CRISPR/Cas9システムで問題となるモザイク(同一個体内の一部の細胞のみに遺伝子改変が起こっている)の頻度が低いことを示している。つまり、クローニングフリーCRISPR/Cas9システムでは、標的部位のDNA二本鎖切断が迅速に起こり、受精卵の第一卵割までに片アリルに外来遺伝子がノックインされたことを示している。またオフターゲット変異の候補となる部位を解析したところ、いずれのノックインマウスでも変異は検出されなかった。このことは、クローニングフリーCRISPR/Cas9システムでは、Cas9を蛋白質として注入したことによりCas9の半減期が短くなり、標的部位を切断した後迅速に分解されるため、従来型CRISPR/Cas9システムの大きな課題であるオフターゲット変異(ガイドRNA配列に類似した配列の非特異的切断)が大幅に減少することを示している。
 このクローニングフリーCRISPR/Cas9システムは、ガイドRNAの活性評価も簡便である。従来のような培養細胞を用いた実験は必要なく、試験管内で標的配列を含む[[PCR]]産物、Cas9蛋白質、crRNA、tracrRNAをインキュベートして電気泳動するだけで(''in vitro'' digestion assay:IDA)、その切断活性を調べることができる。クローニングフリーCRISPR/Cas9システムを用い、[[アクチン|ActB]] ([[β-actin]])遺伝子座に[[EGFP]](enhanced green fluorescent protein)を含む2.5 kbの外来遺伝子をノックインするマウスを作成したところ、およそ50%の新生仔マウスにEGFPが目的部位にノックインされていた。従来用いられてきたCas9 mRNAとsgRNAからなる2要素システムを用い対照実験を行ったところ、その効率は10%程度だった。このことからクローニングフリーCRISPR/Cas9システムは、外来遺伝子のノックイン効率を大幅に向上させることが明らかになった<ref name=Aida2015/>。さらに作製したノックインマウスを野生型マウスと交配し、次世代への伝達効率を調べたところ、すべての系統から、50%の効率で次世代のノックインマウスが得られた。このことは、従来型CRISPR/Cas9システムで問題となるモザイク(同一個体内の一部の細胞のみに遺伝子改変が起こっている)の頻度が低いことを示している。つまり、クローニングフリーCRISPR/Cas9システムでは、標的部位のDNA二本鎖切断が迅速に起こり、受精卵の第一卵割までに片アリルに外来遺伝子がノックインされたことを示している。またオフターゲット変異の候補となる部位を解析したところ、いずれのノックインマウスでも変異は検出されなかった。このことは、クローニングフリーCRISPR/Cas9システムでは、Cas9を蛋白質として注入したことによりCas9の半減期が短くなり、標的部位を切断した後迅速に分解されるため、従来型CRISPR/Cas9システムの大きな課題であるオフターゲット変異(ガイドRNA配列に類似した配列の非特異的切断)が大幅に減少することを示している。


 以上の結果は、クローニングフリーCRISPR/Cas9システムが簡便で高効率、そしてモザイクとオフターゲットの少ないノックインマウス作成法であることを示している。さらに、最近、ノックインする鋳型としてプラスミドDNAより長鎖一本鎖DNAの方が効率が高いことが報告された<ref><pubmed>28511701</pubmed></ref>。従って、現時点で最も高効率な外来遺伝子のノックインマウス作成法は、一本鎖DNAを鋳型として用いるクローニングフリーCRISPR/Cas9システムである。筆者らの研究室では、この方法を用いて約50%の効率でfloxedマウスやCreノックインマウスなどを作成している。
 以上の結果は、クローニングフリーCRISPR/Cas9システムが簡便で高効率、そしてモザイクとオフターゲットの少ないノックインマウス作成法であることを示している。さらに、最近、ノックインする鋳型としてプラスミドDNAより長鎖一本鎖DNAの方が効率が高いことが報告された<ref><pubmed>28511701</pubmed></ref>。従って、現時点で最も高効率な外来遺伝子のノックインマウス作成法は、一本鎖DNAを鋳型として用いるクローニングフリーCRISPR/Cas9システムである。筆者らの研究室では、この方法を用いて約50%の効率でfloxedマウスやCreノックインマウスなどを作成している。
143行目: 145行目:


===== 遺伝子改変非ヒト霊長類の作製 =====
===== 遺伝子改変非ヒト霊長類の作製 =====
 ヒトの疾患、特に精神神経疾患のモデル動物としてマウスよりヒトと解剖学的、生理学的、遺伝学的に類似している[[非ヒト霊長類]]の疾患モデルが重要である。ゲノム編集技術を用いた標的遺伝子改変非ヒト霊長類の作成には、2014年に3つのグループが成功した<ref><pubmed>24486104</pubmed></ref><ref><pubmed>24529597</pubmed></ref><ref><pubmed>24838303</pubmed></ref>。TALENを用いた[[wj:アカゲザル|アカゲザル]]と[[wj:カニクイザル|カニクイザル]]の[[MECP2]]遺伝子の破壊とCRISPR/Cas9システムを用いたカニクイザルの3つの遺伝子([[Nr0b1]], [[Ppar-γ]] [[Rag1]])の破壊が報告された。2015年には、CRISPR/Cas9システムを用い一本鎖のオリゴDNAによる[[p53]]遺伝子への塩基置換が報告された<ref><pubmed>25430965</pubmed></ref>[37]。2018年には、[[mCherry]]やGFPなどの標的部位へのノックインカニクイザルの作成が報告された<ref><pubmed> 29327726</pubmed></ref><ref><pubmed>29327727</pubmed></ref>。現在までに作成された精神疾患の非ヒト霊長類モデルは、[[レット症候群]]のモデルであるMecP2欠損カニクイザルと[[自閉症スペクトラム障害]]のモデルである[[SHANK3]]欠損カニクイザルがあり、いずれも疾患の症状を再現している<ref><pubmed>28741620</pubmed></ref><ref><pubmed>28525759</pubmed></ref>。
 ヒトの疾患、特に精神神経疾患のモデル動物としてマウスよりヒトと解剖学的、生理学的、遺伝学的に類似している[[非ヒト霊長類]]の疾患モデルが重要である。ゲノム編集技術を用いた標的遺伝子改変非ヒト霊長類の作成には、2014年に3つのグループが成功した<ref><pubmed>24486104</pubmed></ref><ref><pubmed>24529597</pubmed></ref><ref><pubmed>24838303</pubmed></ref>。TALENを用いた[[wj:アカゲザル|アカゲザル]]と[[wj:カニクイザル|カニクイザル]]の[[MECP2]]遺伝子の破壊とCRISPR/Cas9システムを用いたカニクイザルの3つの遺伝子([[Nr0b1]], [[Ppar-γ]] [[Rag1]])の破壊が報告された。2015年には、CRISPR/Cas9システムを用い一本鎖のオリゴDNAによる[[p53]]遺伝子への塩基置換が報告された<ref><pubmed>25430965</pubmed></ref>[37]。2018年には、[[mCherry]]やGFPなどの標的部位へのノックインカニクイザルの作成が報告された<ref><pubmed> 29327726</pubmed></ref><ref><pubmed>29327727</pubmed></ref>。現在までに作成された精神疾患の非ヒト霊長類モデルは、[[レット症候群]]のモデルであるMecP2欠損カニクイザルと[[自閉症スペクトラム障害]]のモデルである[[SHANK3]]欠損カニクイザルがあり、いずれも疾患の症状を再現している<ref><pubmed>28741620</pubmed></ref><ref><pubmed>28525759</pubmed></ref><ref><pubmed> 30329048 </pubmed></ref>。


 CRISPR/Cas9システムを用いることにより、忠実に疾患病態を再現した非ヒト霊長類の作製が可能になった。しかし、ゲノム編集の効率化、モザイクの抑制、オフターゲットの抑制など、まだ技術の改良が必要である。また、非ヒト霊長類をモデル動物として用いる場合、個体間のゲノム多様性も重要な問題になる。最近、カニクイザルで体細胞からのクローン作成が報告されたので<ref><pubmed>29395327</pubmed></ref>、クローン技術とCRISPR/Casシステムを組み合わせることにより、より優れた精神神経疾患モデルを作出できると期待される。
 CRISPR/Cas9システムを用いることにより、忠実に疾患病態を再現した非ヒト霊長類の作製が可能になった。しかし、ゲノム編集の効率化、モザイクの抑制、オフターゲットの抑制など、まだ技術の改良が必要である。また、非ヒト霊長類をモデル動物として用いる場合、個体間のゲノム多様性も重要な問題になる。最近、カニクイザルで体細胞からのクローン作成が報告されたので<ref><pubmed>29395327</pubmed></ref>、クローン技術とCRISPR/Casシステムを組み合わせることにより、遺伝的背景が均一なBMAL1欠損カニクイザルが作出された<ref>'''Liu Z, Cai Y, Liao Z, Xu Y, Wang Y, Wang Z, Jiang X, Li Y, Lu Y, Nie Y, Zhang X, Li C, Bian X, Poo M-M, Chang H-C, Sun Q'''<br>Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer<br>''National Science Review'': 2019, 6;101-108[https://doi.org/10.1093/nsr/nwz003 [DOI<nowiki>]</nowiki>]</ref>。


==== 生体におけるゲノム編集 ====
==== 生体におけるゲノム編集 ====
 生体における遺伝子ノックアウトは、標的遺伝子に対するガイドRNAとCas9のcDNAを、様々な臓器に導入し、非相同末端結合(NHEJ)を利用した修復により可能である。しかし、標的部位への遺伝子ノックインには、相同組換えを利用した修復が必要である。神経細胞などの非分裂細胞は、相同組換え活性が低く、従来の遺伝子ノックイン技術を適用することは難しい。最近、非分裂細胞に効率よく遺伝子をノックインできる技術が開発されたので、以下に2つの新技術を概説する。ゲノム編集に必要な核酸を生体に導入する方法として、[[アデノ随伴ウイルスベクター]]を用いる方法、電気穿孔法、[[ハイドロダイナッミク法]]などがある。ハイドロダイナッミク法は肝臓でのゲノム編集に用いられるが<ref>'''Ibraheim E, Song CQ, Mir A, Amrani N, Xue W, Sontheimer EJ.'''<br>All-in-One adeno-associated virus delivery and genome editing. <br>bioRxiv Posted April 4, 2018</ref>、脳でのゲノム編集は主にアデノ随伴ウイルスベクターを用いる方法と電気穿孔法が用いられる。
 生体における遺伝子ノックアウトは、標的遺伝子に対するガイドRNAとCas9のcDNAを、様々な臓器に導入し、非相同末端結合(NHEJ)を利用した修復により可能である。しかし、標的部位への遺伝子ノックインには、相同組換えを利用した修復が必要である。神経細胞などの非分裂細胞は、相同組換え活性が低く、従来の遺伝子ノックイン技術を適用することは難しい。最近、非分裂細胞に効率よく遺伝子をノックインできる技術が開発されたので、以下に2つの新技術を概説する。ゲノム編集に必要な核酸を生体に導入する方法として、[[アデノ随伴ウイルスベクター]]を用いる方法、電気穿孔法、[[ハイドロダイナッミク法]]などがある。ハイドロダイナッミク法は肝臓でのゲノム編集に用いられるが<ref><pubmed> 30231914 </pubmed></ref>、脳でのゲノム編集は主にアデノ随伴ウイルスベクターを用いる方法と電気穿孔法が用いられる。
 
 生体におけるゲノム編集は、疾患の悪化に関与する遺伝子の破壊あるいは変異遺伝子の修復により、いままで治療法のなかった精神神経疾患に新しい治療法を提供する可能性を持っている。筋ジストロフィーの新しい治療法として、[[アンチセンスオリゴヌクレオチド]]を用いた[[exon skipping]](変異のあるエクソンを飛ばして、多少短くなるがある程度機能のある原因遺伝子ジストロフィンを産生させる方法)が注目されている。しかし、exon skippingの効率や副作用など、多くの克服すべき課題が多い。そこで、アンチセンスオリゴヌクレオチドの代わりにCRISPR/Cas9を用いてexon skippingを起こさせる試みが[[デュシャンヌ型筋ジストロフィー]](DMD)のモデルマウスを用いて行われた。米国の3つの研究グループは、ほぼ同時に、CRISPR/Cas9を使ってDMDモデルマウスのジストロフィン遺伝子の変異部分のみを切除し、機能的なジストロフィンを生成させ、筋力を回復させることに成功した<ref><pubmed>26721683</pubmed></ref><ref><pubmed>26721684</pubmed></ref><ref><pubmed>26721686</pubmed></ref>。患者を対象とした臨床治験を始めるには、CRISPR/Cas9の効率向上、骨格筋へのデリバリー法の開発、免疫原性など克服すべき課題も多いが、''in vivo''でのゲノム編集が有効なことを示した成果である。


 生体におけるゲノム編集は、疾患の悪化に関与する遺伝子の破壊あるいは変異遺伝子の修復により、いままで治療法のなかった精神神経疾患に新しい治療法を提供する可能性を持っている。筋ジストロフィーの新しい治療法として、[[アンチセンスオリゴヌクレオチド]]を用いた[[exon skipping]](変異のあるエクソンを飛ばして、多少短くなるがある程度機能のある原因遺伝子ジストロフィンを産生させる方法)が注目されている。しかし、exon skippingの効率や副作用など、多くの克服すべき課題が多い。そこで、アンチセンスオリゴヌクレオチドの代わりにCRISPR/Cas9を用いてexon skippingを起こさせる試みが[[デュシャンヌ型筋ジストロフィー]](DMD)のモデルマウスを用いて行われた。米国の3つの研究グループは、ほぼ同時に、CRISPR/Cas9を使ってDMDモデルマウスのジストロフィン遺伝子の変異部分のみを切除し、機能的なジストロフィンを生成させ、筋力を回復させることに成功した<ref><pubmed>26721683</pubmed></ref><ref><pubmed>26721684</pubmed></ref><ref><pubmed>26721686</pubmed></ref>。患者を対象とした臨床治験を始めるには、CRISPR/Cas9の効率向上、骨格筋へのデリバリー法の開発、免疫原性<ref><pubmed> 31015529 </pubmed></ref>など克服すべき課題も多いが、''in vivo''でのゲノム編集が有効なことを示した成果である。


===== 非相同末端結合を利用した遺伝子ノックイン=====
===== 非相同末端結合を利用した遺伝子ノックイン=====
157行目: 158行目:


===== 相同組換えを利用した遺伝子ノックイン =====
===== 相同組換えを利用した遺伝子ノックイン =====
 神経細胞は分裂を行っていない細胞なので、相同組換えを利用した遺伝子ノックインをすることは困難であった。これを克服する方法としてSLENDR(single-cell labeling of endogenous proteins by CRISPR-Cas9-mediated homology-directed repair)法が開発された<ref name=mikuni2016><pubmed>27180908</pubmed></ref>。SLENDR法では、分裂能を持つ神経前駆細胞に、標的部位のDNA二本鎖切断に必要なガイドRNA、Cas9のcDNA、相同性を持つ外来遺伝子を子宮内電気穿孔法を用い導入する。この方法を用い標的遺伝子にタグ配列を挿入することができ、免疫組織化学に適した抗体のない遺伝子でもその局在を解析することができる。
 神経細胞は分裂を行っていない細胞なので、相同組換えを利用した遺伝子ノックインをすることは困難であった。これを克服する方法としてSLENDR(single-cell labeling of endogenous proteins by CRISPR-Cas9-mediated homology-directed repair)法が開発された。SLENDR法では、分裂能を持つ神経前駆細胞に、標的部位のDNA二本鎖切断に必要なガイドRNA、Cas9のcDNA、相同性を持つ外来遺伝子を子宮内電気穿孔法を用い導入する。この方法を用い標的遺伝子にタグ配列を挿入することができ、免疫組織化学に適した抗体のない遺伝子でもその局在を解析することができる<ref><pubmed> 27180908 </pubmed></ref>。さらに最近、挿入する外来遺伝子をアデノ随伴ウイルスベクターを用い脳に導入することにより、相同組換えによるノックイン効率が高くなることが報告された<ref><pubmed>29056297</pubmed></ref>。標的部位のDNA二本鎖切断に必要なguide RNA、Cas9のcDNA、相同性を持つ外来遺伝子をアデノ随伴ウイルスベクターに組み込み、脳へ局所注入することにより、HITI法と同等な効率で狙った部位に遺伝子をノックインできる。


 さらに最近、挿入する外来遺伝子をアデノ随伴ウイルスベクターを用い脳に導入することにより、相同組換えによるノックイン効率が高くなることが報告された<ref><pubmed>29056297</pubmed></ref>。標的部位のDNA二本鎖切断に必要なguide RNA、Cas9のcDNA、相同性を持つ外来遺伝子をアデノ随伴ウイルスベクターに組み込み、脳へ局所注入することにより、HITI法と同等な効率で狙った部位に遺伝子をノックインできる。
=====不活性型Cas9を用いた遺伝子の転写制御=====
 ガイドRNAとは複合体を形成できるがヌクレアーゼ活性を持たない不活性型Cas9 (dCas9)に転写抑制因子KRABを融合し (dCas9-KRAB)、標的ゲノム部位と相補的配列を持つガイドRNAと伴にレンチウイルスベクターを用い脳に導入することにより、標的遺伝子の発現を効率よくノックダウンできることが報告された (CRISPRi<ref><pubmed> 29403034 </pubmed></ref>)。また、dCas9に3種類の転写活性化因子(VP64、p65、Rta)を融合し (dCas9-VPR)、標的遺伝子の転写開始点に近接した領域に設計したガイドRNAと伴にレンチウイルスベクターを用い脳に導入することにより、標的遺伝子の転写を活性化できることも報告された (CRISPRa)<ref><pubmed> 30863790 </pubmed></ref>。CRISPRiおよびCRISPRaとも、ガイドRNAを複数導入することにより、同時に複数の遺伝子の転写制御が可能である。さらに、細胞種特異的プロモーターを用いdCas9-KRABあるいはdCas9-VPRを特定の細胞種に発現させることにより、細胞特異的な転写制御が可能であり、従来の細胞種特異的遺伝子欠損マウスで必要なマウスの交配を省略することができる。


== ゲノム編集研究の今後 ==
== ゲノム編集研究の今後 ==

案内メニュー