「コネクトーム」の版間の差分

編集の要約なし
編集の要約なし
41行目: 41行目:
 ミクロスケールなコネクトーム構築には、電子顕微鏡で観察するための多数の連続切片を失うことなく作製し、撮影し、その画像を保存し、結合性を解析していくための技術開発が行われてきている(後述)。その結果、[[マウス]][[網膜]]、[[ショウジョウバエ]]視覚系、マウス[[大脳]][[視覚野]]の部分的なコネクトームなどが構築された。これらの情報を総合的に収集しているのは、[http://www.openconnectomeproject.org/ Open Connectome project]である。
 ミクロスケールなコネクトーム構築には、電子顕微鏡で観察するための多数の連続切片を失うことなく作製し、撮影し、その画像を保存し、結合性を解析していくための技術開発が行われてきている(後述)。その結果、[[マウス]][[網膜]]、[[ショウジョウバエ]]視覚系、マウス[[大脳]][[視覚野]]の部分的なコネクトームなどが構築された。これらの情報を総合的に収集しているのは、[http://www.openconnectomeproject.org/ Open Connectome project]である。


 一方、Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更にスケールの大きな'''「マクロスケール Macroscale」'''のコネクトームである<ref>'''Olaf Sporns'''<br>Discovering the Human Connectome<br>''MIT Press'' 2012 ISBN: 0262017903</ref><ref>'''Henry Kennedy, David C. Van Essen, Yves Christen (eds.)'''<br>Micro-, Meso- and Macro-Connectomics of the Brain<br>''Springer'', 2016 [http://link.springer.com/book/10.1007%2F978-3-319-27777-6 [OpenAccess]]</ref>。これは小型の動物ではなく、ヒト、サルなど比較的大型の動物での脳の活動部位から推定されるコネクトームである。ヒトを中心にこの情報を収集しているのは、[http://www.neuroscienceblueprint.nih.gov/connectome/ Human Connectome Project]である。これには、非侵襲な[[テンソルMRI]]などを中心に用い神経線維の走行など解剖学的な側面に注目している[http://www.humanconnectomeproject.org/ The Harvard/MGH-UCLA Project]、および脳における[[fMRI]]による活動領域の検出やゲノム情報など機能的な側面に重点を置く国際プロジェクト[http://humanconnectome.org/ The WU-Minn Project]がある。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。
 一方、Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更にスケールの大きな'''「マクロスケール Macroscale」'''のコネクトームである<ref>'''Olaf Sporns'''<br>Discovering the Human Connectome<br>''MIT Press'' 2012 ISBN 0262017903</ref><ref>'''Henry Kennedy, David C. Van Essen, Yves Christen (eds.)'''<br>Micro-, Meso- and Macro-Connectomics of the Brain<br>''Springer'', 2016 [http://link.springer.com/book/10.1007%2F978-3-319-27777-6 [OpenAccess]]</ref>。これは小型の動物ではなく、ヒト、サルなど比較的大型の動物での脳の活動部位から推定されるコネクトームである。ヒトを中心にこの情報を収集しているのは、[http://www.neuroscienceblueprint.nih.gov/connectome/ Human Connectome Project]である。これには、非侵襲な[[テンソルMRI]]などを中心に用い神経線維の走行など解剖学的な側面に注目している[http://www.humanconnectomeproject.org/ The Harvard/MGH-UCLA Project]、および脳における[[fMRI]]による活動領域の検出やゲノム情報など機能的な側面に重点を置く国際プロジェクト[http://humanconnectome.org/ The WU-Minn Project]がある。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。


 以上、肉眼、光学顕微鏡のレベルである「メソスケール」、電子顕微鏡レベルである「ミクロスケール」、そして非侵襲で観察される脳の構造や活動を観察する「マクロスケール」の3つの階層での断絶が、コネクトームの研究では認識されているのが現状である。しかし、例えば、深度のある組織の観察を可能にする[[多光子励起顕微鏡]]、広い範囲を高速で観察できる[[光シート顕微鏡]]、光学顕微鏡の解像度を著しく向上させる[[超高解像度顕微鏡]]([[PALM]]、[[STORM]]など)<ref><pubmed>23063602</pubmed></ref>、が改良されれば、これらのスケールの間の断絶を埋めることができる。
 以上、肉眼、光学顕微鏡のレベルである「メソスケール」、電子顕微鏡レベルである「ミクロスケール」、そして非侵襲で観察される脳の構造や活動を観察する「マクロスケール」の3つの階層での断絶が、コネクトームの研究では認識されているのが現状である。しかし、例えば、深度のある組織の観察を可能にする[[多光子励起顕微鏡]]、広い範囲を高速で観察できる[[光シート顕微鏡]]、光学顕微鏡の解像度を著しく向上させる[[超高解像度顕微鏡]]([[PALM]]、[[STORM]]など)<ref><pubmed>23063602</pubmed></ref>、が改良されれば、これらのスケールの間の断絶を埋めることができる。
125行目: 125行目:
 また、コネクトームに関係したプロジェクトは大きな研究費と多くの研究者の存在が必要となり、そのデータの取得と公開が神経科学者などのコミュニティに広く有用であるため、米国では[[National Brain Observatory]](国立脳天文台)設立の提案がなされている<ref><pubmed>26481036</pubmed></ref>。[[w:Argonne National Laboratory|Argonne National Laboratory]](イリノイ州)などにそのような組織を作ることが計画され始めている<ref>http://www.sciencemag.org/news/2015/10/neuroscientist-team-calls-national-brain-observatory</ref>。  
 また、コネクトームに関係したプロジェクトは大きな研究費と多くの研究者の存在が必要となり、そのデータの取得と公開が神経科学者などのコミュニティに広く有用であるため、米国では[[National Brain Observatory]](国立脳天文台)設立の提案がなされている<ref><pubmed>26481036</pubmed></ref>。[[w:Argonne National Laboratory|Argonne National Laboratory]](イリノイ州)などにそのような組織を作ることが計画され始めている<ref>http://www.sciencemag.org/news/2015/10/neuroscientist-team-calls-national-brain-observatory</ref>。  


 このようなコネクトームのデータは、脳科学、神経科学全般の基礎研究情報として、ヒトと動物の脳の働き、神経回路の構造と機能の理解のために広く利用されることになる<ref name=seung /><ref>'''Gary Marcus, Jeremy Freeman (Eds), May-Britt Moser, Edvard I. Moser (Contributors)'''<br>The Future of the Brain: Essays by the World's Leading Neuroscientists<br> ''Princeton University Press'', 2014, ISBN 069116276</ref>。
 このようなコネクトームのデータは、脳科学、神経科学全般の基礎研究情報として、ヒトと動物の脳の働き、神経回路の構造と機能の理解のために広く利用されることになる<ref name=seung /><ref>'''Gary Marcus, Jeremy Freeman (Eds), May-Britt Moser, Edvard I. Moser (Contributors)'''<br>The Future of the Brain: Essays by the World's Leading Neuroscientists<br> ''Princeton University Press'', 2014, ISBN 069116276X</ref>。


 特に、医学領域では、[[認知症]]、[[うつ病]]、[[統合失調症]]を含めた[[精神疾患|精神]]・神経疾患、[[自閉症]]などの[[発達障害]]、神経組織の損傷などに伴う様々な病態や症状の理解の基礎データにもなる。将来はこれらの疾患の客観的な診断への活用が注目されている。そして遺伝子情報を活用した[[精密医療]]とともに、有効な治療法の開発と個々の患者への適用にも貢献するであろう。
 特に、医学領域では、[[認知症]]、[[うつ病]]、[[統合失調症]]を含めた[[精神疾患|精神]]・神経疾患、[[自閉症]]などの[[発達障害]]、神経組織の損傷などに伴う様々な病態や症状の理解の基礎データにもなる。将来はこれらの疾患の客観的な診断への活用が注目されている。そして遺伝子情報を活用した[[精密医療]]とともに、有効な治療法の開発と個々の患者への適用にも貢献するであろう。