「コネクトーム」の版間の差分

35行目: 35行目:


====1)生理学的方法====
====1)生理学的方法====
生理学的な方法を利用し、神経細胞間の結合性を調べる。これには、複数神経細胞の全細胞記録法、ケージド神経伝達物質のレーザー光刺激法、光遺伝学、[[カルシウムイオン]]のセンサー(カルシウム感受性蛍光色素、GCaMP)、電位感受性センサーなどが利用される。将来的に、[[哺乳類]]の神経系全体のコネクトームの解明には大規模生理学に適した方法論の開発が必要である。<br />
生理学的な方法を利用し、神経細胞間の結合性を調べる。これには、複数神経細胞の全細胞記録法、ケージド神経伝達物質のレーザー光刺激法、光遺伝学、カルシウムイオンのセンサー(カルシウム感受性蛍光色素、GCaMPなどの遺伝学的なリポーター)、電位感受性センサーなどが利用される。将来的に、哺乳類の神経系全体のコネクトームの解明には大規模生理学に適した方法論の開発が必要である。<br />




====2)シリアル電子顕微鏡====
====2)シリアル電子顕微鏡====
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法である。しかしながら、哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い切片を失うことなく、巨大な数の電子顕微鏡写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレースしていく必要がある。その[[情報量]]は、ビッグデータの典型であり、方法論の開発が進められてきている。特に重要なのは、電子顕微鏡写真のトレースを一箇所間違えると、全く違う細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire()と名付けたクラウドサイトを構築している。これは、現状では、ヒトという作業者の目で電子顕微鏡写真を見て、それをトレースしていくことが、最も確実であるという見地から実施されているものであり、将来は、人工知能などにより、コネクトーム構築の作業が自動化される可能性も高い。
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法である。しかしながら、哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い切片を失うことなく、巨大な数の電子顕微鏡写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレースしていく必要がある。その[[情報量]]は、ビッグデータの典型であり、方法論の開発が進められてきている。特に重要なのは、電子顕微鏡写真のトレースを一箇所間違えると、全く違う細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire<ref>http://eyewire.org/</ref>と名付けたクラウドサイトを構築している。これは、現状では、ヒトという作業者の目で電子顕微鏡写真を見て、それをトレースしていくことが、最も確実であるという見地から実施されているものであり、将来は、人工知能などにより、コネクトーム構築の作業が自動化される可能性も高い。


このアプローチにおいては、神経細胞の広がりが小さく局所的なケースでは、電子顕微鏡写真上での追跡も比較的容易であろうが、例えば長い神経線維でつながった細胞同士のコネクトームを構築することは困難になる。
このアプローチにおいては、神経細胞の広がりが小さく局所的なケースでは、電子顕微鏡写真上での追跡も比較的容易であろうが、例えば長い神経線維でつながった細胞同士のコネクトームを構築することは困難になる。
46行目: 46行目:


====3)遺伝学的標識法====
====3)遺伝学的標識法====
神経細胞を遺伝学的なレポーター(例、蛍光タンパク質)で標識し、神経細胞の形態と結合性を理解する方法論である。この方法論の特徴は、光学顕微鏡レベルでの観察が可能であるので、長い神経線維でつながった細胞同士のコネクトームの構築にも利用できることである。また、遺伝学的に標識できるため様々な神経細胞で特異的に発現するような遺伝子をドライバー(例、Cre、GAL4システム)を利用して、特定の神経回路のコネクトームについての知見を深めることができる。当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、Brainbowと呼ばれる技術である。この技術は、確率論的、いくつかの蛍光団(XFPを)の組み合わせの発現に 依存しています。 各ニューロンは、100以上の異なる色の理論上のパレットを実現するために、異なる比率で最大4つの異なる各XFPのランダムなコレク ションを表現しています。 ランダム化は、タンパク質[[Creリコンビナーゼ]]は、lox部位と呼ばれる短い(34ヌクレオチド)配列の対の間の反転または [[DNA]]の切除を触媒するのCre-lox組換えの巧妙なアプリケーション、によって達成されます。
神経細胞を遺伝学的なレポーター(例、蛍光タンパク質)で標識し、神経細胞の形態と結合性を理解する方法論である。この方法論の特徴は、光学顕微鏡レベルでの観察が可能であるので、長い神経線維でつながった細胞同士のコネクトームの構築にも利用できることである。また、遺伝学的に標識できるため様々な神経細胞で特異的に発現するような遺伝子をドライバー(例、Cre、GAL4システム)を利用して、特定の神経回路のコネクトームについての知見を深めることができる。当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、Brainbowと呼ばれる技術である。この技術は、確率論的、いくつかの蛍光団(XFPを)の組み合わせの発現を利用したもので、 各ニューロンは、Creリコンビナーゼとその基質となるlox配列を巧妙に利用することで、多数の異なる色によって区別できる。
[[ファイル:Brainbow.jpg|サムネイル|右|Brainbow]]
[[ファイル:Brainbow.jpg|サムネイル|右|Brainbow http://www.cellimagelibrary.org/images/42753  (Creative Commons Attribution)]]
 
これらの遺伝学的なツールの利用には、[[トランスジェニック動物]]、ノックイン動物、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能であるアデノ随伴ウイルス(AAV)は、広く用いられている。一方、CRISPR・CAS9によるゲノム編集技術の発達とともに、このような遺伝学的ツールは広汎に用いられるようになると予想される。
特に、遺伝的なリポーターとして、電顕でその発現を観察できる方法は、2)の全体を再構築する方法と併用することで、様々なコンテキストで利用可能になるので注目される。とりわけ、最近開発されたARTEMIS法は、ペルオキシダーゼ活性を持つレポーター遺伝子の発現した上で、高品質な電顕画像を得られる方法である。


これらの遺伝学的なツールの利用には、トランスジェニック動物、ノックイン動物、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能であるアデノ随伴ウイルス(AAV)は、広く用いられている。一方、CRISPR・CAS9によるゲノム編集技術の発達とともに、このような遺伝学的ツールは広汎に用いられるようになると予想される。
特に、遺伝的なリポーターとして、電顕でその発現を観察できる方法は、2)の全体を再構築する方法と併用することで、様々なコンテキストで利用可能になるので注目される。とりわけ、最近開発されたARTEMIS法は、ペルオキシダーゼ活性を持つレポーター遺伝子を発現した神経細胞を、高品質な電顕画像の中で識別することができる<ref>Reconstruction of genetically identified neurons imaged by serial-section electron microscopy</ref>。
また、シナプス結合しているパートナーを調べるために、GRASPという方法が開発され、センチュウ、[[ショウジョウバエ]]などで利用されている。また、GRASP法の他にも、その感度の低さを補うことが可能なsplit HRP法が開発され、哺乳類の神経系でも利用できることが示された。<br />
また、シナプス結合しているパートナーを調べるために、GRASPという方法が開発され、センチュウ、[[ショウジョウバエ]]などで利用されている。また、GRASP法の他にも、その感度の低さを補うことが可能なsplit HRP法が開発され、哺乳類の神経系でも利用できることが示された。<br />


62行目: 61行目:


====5)生体試料観察の工夫 ====
====5)生体試料観察の工夫 ====
組織の透明化、Clarity, expansion 。[[共焦点顕微鏡]]、ナノスコピー、光シート顕微鏡など。<br />
組織の透明化、Clarity, expansion 。共焦点顕微鏡、ナノスコピー、光シート顕微鏡など。<br />




====6)構成論的手法====
====6)構成論的手法====
システムを製作し、動作させることにより理解しようという方法論。例えば、シミュレーションやロボティクスを用いた戦略<br />
システムを製作し、動作させることにより理解しようという方法論。例えば、シミュレーションやロボティクスを用いた戦略<br />


==巨視的なコネクトーム==
==巨視的なコネクトーム==