「コネクトーム」の版間の差分

編集の要約なし
編集の要約なし
40行目: 40行目:
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法である<ref><pubmed>21390125</pubmed></ref><ref><pubmed>21390124</pubmed></ref><ref><pubmed>23925240</pubmed></ref><ref><pubmed>26232230</pubmed></ref><ref><pubmed>27015312</pubmed></ref>。しかしながら、哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い切片を失うことなく、巨大な数の電顕写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレースしていく必要がある。その情報量は、[[ビッグデータ]]の典型であり、方法論の開発が進められてきている<ref><pubmed>24598270</pubmed></ref>。特に重要なのは、神経細胞の電顕写真のトレースを一箇所間違えると、全く違う神経細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire<ref>http://eyewire.org/</ref>と名付けたウェッブサイトを構築している。これは、現状では、ヒトという作業者の目で電顕写真を見て、それをトレースしていくことが、最も確実であるという見地から実施されているものである。将来は、ディープラーニングを行う人工知能により、コネクトーム構築の精密作業が自動化される可能性も高い。このアプローチにおいては、神経細胞の広がりが小さく局所的なケースでは電顕写真上での追跡も比較的容易であろうが、例えば長い神経線維でつながった神経細胞同士のコネクトームを構築することは非常に困難である。この解決には、例えばcorrelated EMのような。。
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法である<ref><pubmed>21390125</pubmed></ref><ref><pubmed>21390124</pubmed></ref><ref><pubmed>23925240</pubmed></ref><ref><pubmed>26232230</pubmed></ref><ref><pubmed>27015312</pubmed></ref>。しかしながら、哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い切片を失うことなく、巨大な数の電顕写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレースしていく必要がある。その情報量は、[[ビッグデータ]]の典型であり、方法論の開発が進められてきている<ref><pubmed>24598270</pubmed></ref>。特に重要なのは、神経細胞の電顕写真のトレースを一箇所間違えると、全く違う神経細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire<ref>http://eyewire.org/</ref>と名付けたウェッブサイトを構築している。これは、現状では、ヒトという作業者の目で電顕写真を見て、それをトレースしていくことが、最も確実であるという見地から実施されているものである。将来は、ディープラーニングを行う人工知能により、コネクトーム構築の精密作業が自動化される可能性も高い。このアプローチにおいては、神経細胞の広がりが小さく局所的なケースでは電顕写真上での追跡も比較的容易であろうが、例えば長い神経線維でつながった神経細胞同士のコネクトームを構築することは非常に困難である。この解決には、例えばcorrelated EMのような。。


[[ファイル:Fly.jpg|サムネイル||ショウジョウバエ視覚系のシリアル電顕写真に現れた細胞をトレースすることでコネクトームを理解 http://openconnecto.me/takemura13 doi: 10.1038/nature12450]]
[[ファイル:Fly.jpg|サムネイル||ショウジョウバエ視覚系のシリアル電顕写真に現れた細胞をトレースすることでコネクトームを理解 http://openconnecto.me/takemura13 doi: 10.1038/nature12450]]


====3)遺伝学的標識法====
====3)遺伝学的標識法====
神経細胞を遺伝学的なレポーター(例、蛍光タンパク質)で標識し、神経細胞の形態と結合性を理解する方法論である。この方法論の特徴は、光学顕微鏡レベルでの観察が可能であるので、長い神経線維でつながった細胞同士のコネクトームの構築にも利用できることである。また、遺伝学的に標識できるため様々な神経細胞で特異的に発現するような遺伝子をドライバー(例、Cre、GAL4システム)を利用して、特定の神経回路のコネクトームについての知見を深めることができる。当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、Brainbowと呼ばれる技術である<ref><pubmed>18446160</pubmed></ref>。この技術は、ランダムに、異なる色を持ついくつかの蛍光タンパク質の組み合わせの発現を利用したもので、 各ニューロンは、Creリコンビナーゼによる基質となるlox配列の巧妙な組み換えを利用することで、異なる色の蛍光を発色することになり、細胞体とその突起が異なる色として区別することが可能になっている。
神経細胞を遺伝学的なレポーター(例、蛍光タンパク質)で標識し、神経細胞の形態と結合性を理解する方法論である。この方法論の特徴は、光学顕微鏡レベルでの観察が可能であるので、長い神経線維でつながった細胞同士のコネクトームの構築にも利用できることである。また、遺伝学的に標識できるため様々な神経細胞で特異的に発現するような遺伝子をドライバー(例、Cre、GAL4システム)を利用して、特定の神経回路のコネクトームについての知見を深めることができる。当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、Brainbowと呼ばれる技術である<ref><pubmed>18446160</pubmed></ref>。この技術は、ランダムに、異なる色を持ついくつかの蛍光タンパク質の組み合わせの発現を利用したもので、 各ニューロンは、Creリコンビナーゼによる基質となるlox配列の巧妙な組み換えを利用することで、異なる色の蛍光を発色することになり、細胞体とその突起が異なる色として区別することが可能になっている。
[[ファイル:Brainbow.jpg|サムネイル||Brainbow http://www.cellimagelibrary.org/images/42753  (Creative Commons Attribution)]]
[[ファイル:Brainbow.jpg|サムネイル||'''Brainbow''' http://www.cellimagelibrary.org/images/42753  (Creative Commons Attribution)]]


これらの遺伝学的なツールの利用には、トランスジェニック動物、ノックイン動物、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能であるアデノ随伴ウイルス(AAV)は、広く用いられている。一方、CRISPR・CAS9によるゲノム編集技術の発達とともに、このような遺伝学的ツールは広汎に用いられるようになると予想される。
これらの遺伝学的なツールの利用には、トランスジェニック動物、ノックイン動物、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能であるアデノ随伴ウイルス(AAV)は、広く用いられている。一方、CRISPR・CAS9によるゲノム編集技術の発達とともに、このような遺伝学的ツールは広汎に用いられるようになると予想される。
68行目: 68行目:
⼀⽅、拡散MRI(dMRI)、テンソルMRI、そしてより新しい方法であるDSI(拡散スペクトラムイメージング, diffusion spectrum imaging, DSI)とHARDI (拡散強調イメージング、High angular resolution diffusion imaging)は、脳内にある軸索の束となった⻑距離の接続の様⼦をマッピングする。この⽅法を使うと、⽣きた脳の中で、そのまま神経の⾛⾏を観察することができる。しかし、神経線維の⾛⾏をみているだけで、実際の結合性を⾒ているものではないが、今後のコネクトーム理解の方法論として期待ができる<ref>http://www.the-scientist.com/?articles.view/articleNo/41266/title/White-s-the-Matter/</ref>。
⼀⽅、拡散MRI(dMRI)、テンソルMRI、そしてより新しい方法であるDSI(拡散スペクトラムイメージング, diffusion spectrum imaging, DSI)とHARDI (拡散強調イメージング、High angular resolution diffusion imaging)は、脳内にある軸索の束となった⻑距離の接続の様⼦をマッピングする。この⽅法を使うと、⽣きた脳の中で、そのまま神経の⾛⾏を観察することができる。しかし、神経線維の⾛⾏をみているだけで、実際の結合性を⾒ているものではないが、今後のコネクトーム理解の方法論として期待ができる<ref>http://www.the-scientist.com/?articles.view/articleNo/41266/title/White-s-the-Matter/</ref>。


[[ファイル:Story-vs-math Task-fMRI.png|サムネイル||Task '''fMRI''': Story vs Math Image courtesy D. Barch, M. Harms, G. Burgess for the WU-Minn HCP consortium - http://humanconnectome.org]]
[[ファイル:Story-vs-math Task-fMRI.png|サムネイル||Task '''fMRI''': Story vs Math Image courtesy D. Barch, M. Harms, G. Burgess for the WU-Minn HCP consortium - http://humanconnectome.org]]


[[ファイル:Diffusion FA.JPG|サムネイル||Fractional anisotropy (top), and principal diffusion directions (bottom) images from the HCP '''dMRI''' Image courtesy of the WU-Minn HCP consortium - http://humanconnectome.org]]
[[ファイル:Diffusion FA.JPG|サムネイル||Fractional anisotropy (top), and principal diffusion directions (bottom) images from the HCP '''dMRI''' Image courtesy of the WU-Minn HCP consortium - http://humanconnectome.org]]


==機能的コネクトーム==
==機能的コネクトーム==