「コーディン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
(同じ利用者による、間の4版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/read0118148 笹井 紀明]</font><br>
<font size="+1">[http://researchmap.jp/read0118148 笹井 紀明]</font><br>
''奈良先端科学技術大学院大学''<br>
''奈良先端科学技術大学院大学''<br>
DOI:<selfdoi /> 原稿受付日:2020年7月18日 原稿完成日:20XX年X月X日<br>
DOI:<selfdoi /> 原稿受付日:2020年7月18日 原稿完成日:2020年7月29日<br>
担当編集委員:[https://researchmap.jp/hiroshikawasaki 河崎 洋志](金沢大学 医学系 脳神経医学教室)<br>
担当編集委員:[https://researchmap.jp/hiroshikawasaki 河崎 洋志](金沢大学 医学系 脳神経医学教室)<br>
</div>
</div>
29行目: 29行目:
}}
}}
== コーディンとは ==
== コーディンとは ==
 1924年、ドイツの生物学者[[wj:ハンス・シュペーマン|ハンス・シュペーマン]]と、[[wj:Hilde Mangold|ヒルデ・マンゴールド]]は、[[wj:イモリ|イモリ]]胚の一部分を別の胚に移植することにより、胚に[[2次軸]]([[脊索]]を含む背側[[中胚葉]])が形成されることを見出し、この部分を「[[形成体]](organizer)」と名付けた。この部分からは[[誘導因子]](移植した組織から分泌され、移植された胚に作用する因子)が分泌されることが予想されたが、その分子実体は長年明らかにされていなかった <ref name=DeRobertis2006><pubmed>16482093</pubmed></ref><ref name=Sander2001><pubmed>11291840</pubmed></ref> 。
 1924年、ドイツの生物学者[[wj:ハンス・シュペーマン|ハンス・シュペーマン]]と、[[wj:Hilde Mangold|ヒルデ・マンゴールド]]は、[[wj:イモリ|イモリ]]胚の一部分を別の胚に移植することにより、胚に[[2次軸]]([[脊索]]を含む背側[[中胚葉]])が形成されることを見出し、この部分を「[[形成体]](organizer)」と名付けた<ref>'''Spemann, H., & Mangold, H. (1924)'''<br>Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Archiv für mikroskopische Anatomie und Entwicklungsmechanik 100, pp. 599–638 [https://bsd.neuroinf.jp/w/images/e/ef/Spemann-Mangold1924_Article_ÜberInduktionVonEmbryonalanlag.pdf PDF]</ref>(英訳 <ref><pubmed>11291841 </pubmed></ref>)。この部分からは[[誘導因子]](移植した組織から分泌され、移植された胚に作用する因子)が分泌されることが予想されたが、その分子実体は長年明らかにされていなかった <ref name=DeRobertis2006><pubmed>16482093</pubmed></ref><ref name=Sander2001><pubmed>11291840</pubmed></ref> 。


 1990年代になって分子生物学的手法、特に遺伝子のクローニング技術が発達したことにより、微小または特定の組織に高い発現量を持つ遺伝子の単離が可能になった。この技術を利用して、カリフォルニア大学・ロサンゼルス校の[[w:Edward M. De Robertis|エドワード・デロバティス]]教授と笹井芳樹博士は、形成体に発現量が蓄積されている遺伝子単離するための[[ディファレンシャルスクリーン]]<ref group=脚注>ディファレンシャルスクリーン:特定の組織で発現する遺伝子を単離する方法の1つ。特定の(発現を期待する)組織と対照となる組織からそれぞれRNAを抽出し、さらにそこから放射性同位元素などでラベルしたcDNAを合成し、これをプローブとしてcDNAライブラリーを用いてスクリーニングを行う。発現を期待する組織で強いシグナルを発出する遺伝子が目的の遺伝子である。chdの単離では、「[[塩化リチウム]]で処理されて全体が背側化した胚」と「紫外線照射により全体が腹側化した胚」のそれぞれからcDNAが合成され、cDNAライブラリーとハイブリダイズさせたときに「形成体」のプローブのみで強くハイブリダイズするものが網羅的に探索された。<br> 現在では[[マイクロアレイ]]や[[mRNAシーケンス法]]を用いることが多い。</ref>を行い、強い2次軸誘導活性をもつ遺伝子を単離した。この遺伝子は分泌因子をコードし、4つのシステイン繰り返し領域(cysteine-rich domain; CRD)を持つもので、コーディン (chordin (chd)と名付けられた。
 1990年代になって分子生物学的手法、特に遺伝子のクローニング技術が発達したことにより、微小または特定の組織に高い発現量を持つ遺伝子の単離が可能になった。この技術を利用して、カリフォルニア大学・ロサンゼルス校の[[w:Edward M. De Robertis|エドワード・デロバティス]]教授と笹井芳樹博士は、形成体に発現量が蓄積されている遺伝子単離するための[[ディファレンシャルスクリーン]]<ref group=脚注>ディファレンシャルスクリーン:特定の組織で発現する遺伝子を単離する方法の1つ。特定の(発現を期待する)組織と対照となる組織からそれぞれRNAを抽出し、さらにそこから放射性同位元素などでラベルしたcDNAを合成し、これをプローブとしてcDNAライブラリーを用いてスクリーニングを行う。発現を期待する組織で強いシグナルを発出する遺伝子が目的の遺伝子である。chdの単離では、「[[リチウム|塩化リチウム]]で処理されて全体が背側化した胚」と「紫外線照射により全体が腹側化した胚」のそれぞれからcDNAが合成され、cDNAライブラリーとハイブリダイズさせたときに「形成体」のプローブのみで強くハイブリダイズするものが網羅的に探索された。<br> 現在では[[マイクロアレイ]]や[[mRNAシーケンス法]]を用いることが多い。</ref>を行い、強い2次軸誘導活性をもつ遺伝子を単離した。この遺伝子は分泌因子をコードし、4つのシステイン繰り返し領域(cysteine-rich domain; CRD)を持つもので、コーディン (chordin (chd)と名付けられた。


 コーディンを発現する背側中胚葉は、それ自体が体軸を形成する脊索へと分化するほか、それに隣接する未分化外胚葉を神経化する活性を持つ。実際に、カエルの[[アニマルキャップ]](マウスで[[エピブラスト]]に相当する部分)に作用して、細胞を直接(ほかの組織と協働することなく)神経化することが明らかになり、コーディンは[[神経誘導因子]]の1つと考えられた。コーディンとほぼ同時期に単離された[[ノギン]] <ref name=Smith1992><pubmed>1339313</pubmed></ref> 、[[フォリスタチン]]<ref name=Hemmati-Brivanlou1994><pubmed>8168135</pubmed></ref> と合わせ、3つの分泌因子が「神経誘導因子」と呼ばれることになった。
 コーディンを発現する背側中胚葉は、それ自体が体軸を形成する脊索へと分化するほか、それに隣接する未分化外胚葉を神経化する活性を持つ。実際に、カエルの[[アニマルキャップ]](マウスで[[エピブラスト]]に相当する部分)に作用して、細胞を直接(ほかの組織と協働することなく)神経化することが明らかになり、コーディンは[[神経誘導因子]]の1つと考えられた。コーディンとほぼ同時期に単離された[[ノギン]] <ref name=Smith1992><pubmed>1339313</pubmed></ref> 、[[フォリスタチン]]<ref name=Hemmati-Brivanlou1994><pubmed>8168135</pubmed></ref> と合わせ、3つの分泌因子が「神経誘導因子」と呼ばれることになった。
[[ファイル:Sasai Chordin Fig1.png|サムネイル|'''図1. コーディンの構造と制御'''<br>'''A.''' コーディンとsog、Chordin-likeのドメイン構造。SOG以外は分泌因子で、SOGではカルボキシル末端側が細胞外に存在する。SP; シグナルペプチド、TM; 膜貫通領域、CR; システインリッチリピートを表す。コーディンのCR1, CR3がBMP4と結合する。Chdl1, Chdl2のCR1, CR3がコーディンのCR3に最も相同性が高い。<br>'''B.''' コーディン、BMP4、Tsg、Xldの制御関係。コーディンを曲線で、BMP(これはADMPでもよい)を青色で、Tsgを赤色でそれぞれ示し、Xldがコーディンタンパク質を切断する部位を緑色で示した。Nはアミノ末端、Cはカルボキシル末端を示す。<ref name=DeRobertis2000><pubmed>11252746</pubmed></ref><ref name=Piccolo1997><pubmed>9363949</pubmed></ref>  をもとに作成。]]
[[ファイル:Sasai Chordin Fig1.png|サムネイル|'''図1. コーディンの構造と制御'''<br>'''A.''' コーディンとSog、Chordin-likeのドメイン構造。Sog以外は分泌因子で、Sogではカルボキシル末端側が細胞外に存在する。SP; シグナルペプチド、TM; 膜貫通領域、CR; システインリッチリピートを表す。コーディンのCR1, CR3がBMP4と結合する。Chdl1, Chdl2のCR1, CR3がコーディンのCR3に最も相同性が高い。<br>'''B.''' コーディン、BMP4、Tsg、Xldの制御関係。コーディンを曲線で、BMP(これはADMPでもよい)を青色で、Tsgを赤色でそれぞれ示し、Xldがコーディンタンパク質を切断する部位を緑色で示した。Nはアミノ末端、Cはカルボキシル末端を示す。<ref name=DeRobertis2000><pubmed>11252746</pubmed></ref><ref name=Piccolo1997><pubmed>9363949</pubmed></ref>  をもとに作成。]]


==構造==
==構造==
42行目: 42行目:
 コーディンの機能は主に[[アフリカツメガエル]]において研究されているが、その相同遺伝子は[[マウス]]、[[ヒト]]をはじめとするすべての[[脊椎動物]]において存在すると考えられる。
 コーディンの機能は主に[[アフリカツメガエル]]において研究されているが、その相同遺伝子は[[マウス]]、[[ヒト]]をはじめとするすべての[[脊椎動物]]において存在すると考えられる。
=== 無脊椎動物 ===
=== 無脊椎動物 ===
 [[ショウジョウバエ]]では、[[short gastrulation]]([[sog]])が[[wj:細胞性胞胚|細胞性胞胚]] (blastoderm)の時期に胚の腹側に発現し、[[decapentaplegic]]([[dpp]])という分泌因子と拮抗して働く <ref name=Biehs1996><pubmed>8918893</pubmed></ref> 。なお、sogは膜貫通ドメインを持ち、細胞膜にアンカーされる。またsogは細胞外ドメインにコーディン同様のシステインリッチドメインをもつタンパク質をコードし、ショウジョウバエの神経発生を促進する。一方、dppはそれを抑制する効果があるため、sog/dppの関係はコーディン/BMPの関係([[コーディン#作用機構|作用機構]]を参照)に対応している。さらに、ショウジョウバエのsogをコードする[[mRNA]]をカエル胚に注入すると2次軸が形成された <ref name=Holley1995><pubmed>7617035</pubmed></ref> 。これらの事実から、ショウジョウバエsog(腹側に発現する)と脊椎動物のコーディン(背側に発現する)は[[wj:相同遺伝子|相同遺伝子]]であり、[[背腹軸]]が逆転して進化したものと考えられた<ref name=DeRobertis1996><pubmed>8598900</pubmed></ref> 。
 [[ショウジョウバエ]]では、[[Short gastrulation]]([[Sog]])が[[wj:細胞性胞胚|細胞性胞胚]] (blastoderm)の時期に胚の腹側に発現し、[[Decapentaplegic]]([[Dpp]])という分泌因子と拮抗して働く <ref name=Biehs1996><pubmed>8918893</pubmed></ref> 。なお、Sogは膜貫通ドメインを持ち、細胞膜にアンカーされる。またSogは細胞外ドメインにコーディン同様のシステインリッチドメインをもつタンパク質をコードし、ショウジョウバエの神経発生を促進する。一方、Dppはそれを抑制する効果があるため、Sog/Dppの関係はコーディン/BMPの関係([[コーディン#作用機構|作用機構]]を参照)に対応している。さらに、ショウジョウバエのSogをコードする[[mRNA]]をカエル胚に注入すると2次軸が形成された <ref name=Holley1995><pubmed>7617035</pubmed></ref> 。これらの事実から、ショウジョウバエSog(腹側に発現する)と脊椎動物のコーディン(背側に発現する)は[[wj:相同遺伝子|相同遺伝子]]であり、[[背腹軸]]が逆転して進化したものと考えられた<ref name=DeRobertis1996><pubmed>8598900</pubmed></ref> 。


 [[Xolloid]]/[[Tolloid]] <ref name=Clark1999><pubmed>10331975</pubmed></ref>や[[Tsg]]の相同遺伝子である[[Tolloid]]や[[Twisted Gastrulation]]もショウジョウバエに存在し、脊椎動物のコーディンやBMPと同様にSOGやDPPと相互作用する <ref name=Yu2000><pubmed>10769238</pubmed></ref> 。
 [[Xolloid]]/[[Tolloid]] <ref name=Clark1999><pubmed>10331975</pubmed></ref>や[[Tsg]]の相同遺伝子である[[Tolloid]]や[[Twisted Gastrulation]]もショウジョウバエに存在し、脊椎動物のコーディンやBMPと同様にSogやDppと相互作用する <ref name=Yu2000><pubmed>10769238</pubmed></ref> 。


=== 類似遺伝子 ===
=== 類似遺伝子 ===

案内メニュー