「コーディン」の版間の差分

編集の要約なし
(ページの作成:「2020/06/20 コーディン(Chordin) コーディンは、脊椎動物の発生において神経誘導活性を持つ分泌因子をコードする遺伝子である…」)
 
編集の要約なし
1行目: 1行目:
2020/06/20
<div align="right"> 
コーディン(Chordin)
<font size="+1">[http://researchmap.jp/read0118148 笹井 紀明]</font><br>
''奈良先端科学技術大学院大学''<br>
DOI:<selfdoi /> 原稿受付日:2020年7月18日 原稿完成日:20XX年X月X日<br>
担当編集委員:[https://researchmap.jp/ctx 花嶋 かりな](早稲田大学 教育・総合科学術院 先進理工学研究科)<br>
</div>


コーディンは、脊椎動物の発生において神経誘導活性を持つ分泌因子をコードする遺伝子である。
英語名:chordin 独:Chordin 仏:chordine
{{box|text= コーディンは、脊椎動物の発生において神経誘導活性を持つ分泌因子をコードする遺伝子である。}}


アフリカツメガエルにおけるコーディンの機能
== アフリカツメガエルにおけるコーディンの機能 ==


 コーディンは、アフリカツメガエルの形成体(オーガナイザー、原口背唇部)に発現し、神経誘導活性をもつ分泌因子をコードする。この遺伝子はアフリカツメガエルで単離された後、その相同遺伝子がマウスやヒトなどでも同定され機能解析が行われた。さらに、コーディンに結合してその安定性を制御するたんぱく質の存在も複数知られている。
 コーディンは、アフリカツメガエルの形成体(オーガナイザー、原口背唇部)に発現し、神経誘導活性をもつ分泌因子をコードする。この遺伝子はアフリカツメガエルで単離された後、その相同遺伝子がマウスやヒトなどでも同定され機能解析が行われた。さらに、コーディンに結合してその安定性を制御するたんぱく質の存在も複数知られている。
 1924年、ドイツの生物学者ハンス・シュペーマンと、オットー・マンゴールドは、イモリ胚の一部分を別の胚に移植することにより、胚に2次軸(脊索を含む背側中胚葉)が形成されることを見出し、この部分を「形成体(organizer)」と名付けた。この部分からは誘導因子(移植した組織から分泌され、移植された胚に作用する因子)が分泌されることが予想されたが、その分子実体は長年明らかにされていなかった <ref name=De Robertis2006><pubmed>16482093</pubmed></ref><ref name=Sander2001><pubmed>11291840</pubmed></ref> 。
 1924年、ドイツの生物学者ハンス・シュペーマンと、オットー・マンゴールドは、イモリ胚の一部分を別の胚に移植することにより、胚に2次軸(脊索を含む背側中胚葉)が形成されることを見出し、この部分を「形成体(organizer)」と名付けた。この部分からは誘導因子(移植した組織から分泌され、移植された胚に作用する因子)が分泌されることが予想されたが、その分子実体は長年明らかにされていなかった <ref name=De Robertis2006><pubmed>16482093</pubmed></ref><ref name=Sander2001><pubmed>11291840</pubmed></ref> 。
 1990年代になって分子生物学的手法、特に遺伝子のクローニング技術が発達したことにより、微小または特定の組織に高い発現量を持つ遺伝子の単離が可能になった。この技術を利用して、カリフォルニア大学・ロサンゼルス校のエドワード・デロバティス教授と笹井芳樹博士は、オーガナイザー領域に発現量が蓄積されている遺伝子単離するためのディファレンシャルスクリーン (*) を行い、強い2次軸誘導活性をもつ遺伝子を単離した。この遺伝子は分泌因子をコードし、4つのシステイン繰り返し領域(Cysteine-rich domain; CRD)を持つもので、chordin(chd)と名付けられた。
 1990年代になって分子生物学的手法、特に遺伝子のクローニング技術が発達したことにより、微小または特定の組織に高い発現量を持つ遺伝子の単離が可能になった。この技術を利用して、カリフォルニア大学・ロサンゼルス校のエドワード・デロバティス教授と笹井芳樹博士は、オーガナイザー領域に発現量が蓄積されている遺伝子単離するためのディファレンシャルスクリーン (*) を行い、強い2次軸誘導活性をもつ遺伝子を単離した。この遺伝子は分泌因子をコードし、4つのシステイン繰り返し領域(Cysteine-rich domain; CRD)を持つもので、chordin(chd)と名付けられた。
 Chordin(Chd)を発現する背側中胚葉は、それ自体が体軸を形成する脊索へと分化するほか、それに隣接する未分化外胚葉を神経化する活性を持つ。実際に、カエルのアニマルキャップ(マウスでエピブラストに相当する部分)に作用して、細胞を直接(ほかの組織と協働することなく)神経化することが明らかになり、Chdは神経誘導因子の1つと考えられた。chdとほぼ同時期に単離されたnoggin <ref name=Smith1992><pubmed>1339313</pubmed></ref> 、follistatin <ref name=Hemmati-Brivanlou1994><pubmed>8168135</pubmed></ref> と合わせ、3つの分泌因子が「神経誘導因子」と呼ばれることになった。
 Chordin(Chd)を発現する背側中胚葉は、それ自体が体軸を形成する脊索へと分化するほか、それに隣接する未分化外胚葉を神経化する活性を持つ。実際に、カエルのアニマルキャップ(マウスでエピブラストに相当する部分)に作用して、細胞を直接(ほかの組織と協働することなく)神経化することが明らかになり、Chdは神経誘導因子の1つと考えられた。chdとほぼ同時期に単離されたnoggin <ref name=Smith1992><pubmed>1339313</pubmed></ref> 、follistatin <ref name=Hemmati-Brivanlou1994><pubmed>8168135</pubmed></ref> と合わせ、3つの分泌因子が「神経誘導因子」と呼ばれることになった。
 その後、ChdはTGFスーパーファミリーの1つであるBMP4と拮抗して働くことが明らかになった <ref name=Sasai1995><pubmed>7630399</pubmed></ref> 。生化学的には、ChdとBMP4は1:2のモル比で直接結合し <ref name=Larrain2000><pubmed>10648240</pubmed></ref> 、BMP4がBMP受容体に結合するのを阻害することや、その解離定数は0.3 nmol程度であり、結合が強固であることが示された <ref name=Piccolo1996><pubmed>8752213</pubmed></ref> 。
 その後、ChdはTGFスーパーファミリーの1つであるBMP4と拮抗して働くことが明らかになった <ref name=Sasai1995><pubmed>7630399</pubmed></ref> 。生化学的には、ChdとBMP4は1:2のモル比で直接結合し <ref name=Larrain2000><pubmed>10648240</pubmed></ref> 、BMP4がBMP受容体に結合するのを阻害することや、その解離定数は0.3 nmol程度であり、結合が強固であることが示された <ref name=Piccolo1996><pubmed>8752213</pubmed></ref> 。
 さて、未分化外胚葉細胞の予定運命は、表皮か神経のいずれかである。このうち表皮の運命はBMPシグナルの活性化によってもたらされる。(たとえば、ドミナントネガティブBMP受容体(dnBMPR)をカエル胚に発現させることにより、細胞を神経化することができる)<ref name=Suzuki1994><pubmed>7937936</pubmed></ref><ref name=Xu1995><pubmed>7612010</pubmed></ref> 。
 さて、未分化外胚葉細胞の予定運命は、表皮か神経のいずれかである。このうち表皮の運命はBMPシグナルの活性化によってもたらされる。(たとえば、ドミナントネガティブBMP受容体(dnBMPR)をカエル胚に発現させることにより、細胞を神経化することができる)<ref name=Suzuki1994><pubmed>7937936</pubmed></ref><ref name=Xu1995><pubmed>7612010</pubmed></ref> 。
 BMPシグナルはSmadシグナルを活性化して表皮のマーカーであるFoxi1 <ref name=Matsuo-Takasaki2005><pubmed>16079156</pubmed></ref> 、Grainyhead-like-1(Grhl1) <ref name=Tao2005><pubmed>15705857</pubmed></ref> などの転写因子を誘導し、細胞を表皮化する。一方、BMPシグナルが遮断されるとZic1, Sox2 <ref name=Mizuseki1998><pubmed>9435279</pubmed></ref> やXlPOU2 <ref name=Matsuo-Takasaki1999><pubmed>10559482</pubmed></ref> などの、神経系特異的な転写因子の発現が誘導され、細胞が神経化し、背側外胚葉領域に神経板が形成される。「BMPシグナルを遮断する」ことがどのように神経化の遺伝子発現を誘導するのかは明らかではないが、おそらくBMPシグナルによって発現誘導される表皮化遺伝子が神経化遺伝子の発現を抑制しており、BMPシグナルがブロックされることによってZicやXlPOU2の遺伝子が発現するのだろうと考えられている <ref name=Lee2014><pubmed>25234468</pubmed></ref> 。
 BMPシグナルはSmadシグナルを活性化して表皮のマーカーであるFoxi1 <ref name=Matsuo-Takasaki2005><pubmed>16079156</pubmed></ref> 、Grainyhead-like-1(Grhl1) <ref name=Tao2005><pubmed>15705857</pubmed></ref> などの転写因子を誘導し、細胞を表皮化する。一方、BMPシグナルが遮断されるとZic1, Sox2 <ref name=Mizuseki1998><pubmed>9435279</pubmed></ref> やXlPOU2 <ref name=Matsuo-Takasaki1999><pubmed>10559482</pubmed></ref> などの、神経系特異的な転写因子の発現が誘導され、細胞が神経化し、背側外胚葉領域に神経板が形成される。「BMPシグナルを遮断する」ことがどのように神経化の遺伝子発現を誘導するのかは明らかではないが、おそらくBMPシグナルによって発現誘導される表皮化遺伝子が神経化遺伝子の発現を抑制しており、BMPシグナルがブロックされることによってZicやXlPOU2の遺伝子が発現するのだろうと考えられている <ref name=Lee2014><pubmed>25234468</pubmed></ref> 。
また、Chordin、Noggin、Follistatinの3つの因子を同時に発現阻害した胚においては、神経誘導はもちろんのこと、背側組織の発生が大きく阻害された <ref name=Khokha2005><pubmed>15737935</pubmed></ref> 。
また、Chordin、Noggin、Follistatinの3つの因子を同時に発現阻害した胚においては、神経誘導はもちろんのこと、背側組織の発生が大きく阻害された <ref name=Khokha2005><pubmed>15737935</pubmed></ref> 。


コーディンの活性調節
== 活性調節 ==
 
 さて、Chdを発現するオーガナイザー(背側中胚葉)の大きさ、またオーガナイザーによって誘導される神経板は、体全体と比較して特定の大きさでなければならないため、chd遺伝子やそのタンパク質の発現量や活性は厳密に制御される。この制御を行うための因子(Chdタンパク質を分解するものや修飾するもの)の存在が知られている。


さて、Chdを発現するオーガナイザー(背側中胚葉)の大きさ、またオーガナイザーによって誘導される神経板は、体全体と比較して特定の大きさでなければならないため、chd遺伝子やそのタンパク質の発現量や活性は厳密に制御される。この制御を行うための因子(Chdタンパク質を分解するものや修飾するもの)の存在が知られている。
 たとえばXolloid(BMP1)とその近縁遺伝子Xolloid-related(xlr)と呼ばれるメタロプロテアーゼは腹側に発現し、Chdタンパク質を分解する活性を持つ <ref name=Dale2002><pubmed>12464431</pubmed></ref><ref name=Piccolo1997><pubmed>9363949</pubmed></ref> 。この結果BMPタンパク質が解放され、BMPシグナル活性を維持する。これは、背側中胚葉のオーガナイザーが肥大化しないように調節しているメカニズムの1つである <ref name=De Robertis2001><pubmed>11291846</pubmed></ref> 。一方、Twisted Gastrulation(Tsg)と呼ばれる分泌タンパク質がBMP4と結合してTsg-BMP-Chdの複合体を形成してBMP活性を抑制することにより、結果としてChdの活性を保護している <ref name=Chang2001><pubmed>11260717</pubmed></ref><ref name=De Robertis2000><pubmed>11252746</pubmed></ref> 。ただ一方で、TsgがBMPシグナルを保護するという報告もある<ref name=Xie2005><pubmed>15604098</pubmed></ref> 。この齟齬は実験系(強制発現系による生化学的な解析と変異体解析の違い、種の違いなど)によるものと考えられる。
 たとえばXolloid(BMP1)とその近縁遺伝子Xolloid-related(xlr)と呼ばれるメタロプロテアーゼは腹側に発現し、Chdタンパク質を分解する活性を持つ <ref name=Dale2002><pubmed>12464431</pubmed></ref><ref name=Piccolo1997><pubmed>9363949</pubmed></ref> 。この結果BMPタンパク質が解放され、BMPシグナル活性を維持する。これは、背側中胚葉のオーガナイザーが肥大化しないように調節しているメカニズムの1つである <ref name=De Robertis2001><pubmed>11291846</pubmed></ref> 。一方、Twisted Gastrulation(Tsg)と呼ばれる分泌タンパク質がBMP4と結合してTsg-BMP-Chdの複合体を形成してBMP活性を抑制することにより、結果としてChdの活性を保護している <ref name=Chang2001><pubmed>11260717</pubmed></ref><ref name=De Robertis2000><pubmed>11252746</pubmed></ref> 。ただ一方で、TsgがBMPシグナルを保護するという報告もある<ref name=Xie2005><pubmed>15604098</pubmed></ref> 。この齟齬は実験系(強制発現系による生化学的な解析と変異体解析の違い、種の違いなど)によるものと考えられる。
 また、Sizzled(szl)はWntの受容体Frizzledの細胞外ドメインのみを持つsFRPタイプ分泌性因子をコードするが <ref name=Lee2006><pubmed>16413488</pubmed></ref> 、これ自体はWnt8の阻害因子としては働かず <ref name=Collavin2003><pubmed>12506010</pubmed></ref> 、Xolloidを分解して活性を阻害することにより、結果的にChordinの活性を維持する <ref name=Lee2006><pubmed>16413488</pubmed></ref><ref name=Muraoka2006><pubmed>16518392</pubmed></ref> 。
 また、Sizzled(szl)はWntの受容体Frizzledの細胞外ドメインのみを持つsFRPタイプ分泌性因子をコードするが <ref name=Lee2006><pubmed>16413488</pubmed></ref> 、これ自体はWnt8の阻害因子としては働かず <ref name=Collavin2003><pubmed>12506010</pubmed></ref> 、Xolloidを分解して活性を阻害することにより、結果的にChordinの活性を維持する <ref name=Lee2006><pubmed>16413488</pubmed></ref><ref name=Muraoka2006><pubmed>16518392</pubmed></ref> 。
 さて、Chdが発現する原口背唇部を含む一部を胚から切り出して胚を発生させると、腹側胚は細胞塊を形成するのに対し、背側胚は、腹側を含む完全胚になる。これは、背側中胚葉に腹側中胚葉を誘導する活性が存在することを意味する。ChdはADMPというTGFタイプの分泌因子の発現を誘導する。ADMPはChdと同じく背側中胚葉に発現するにもかかわらず、それ自体はALK-2受容体に結合してBMPシグナルを刺激(Smad1をリン酸化)し、中胚葉を腹側化する活性を持つ。また、ADMPはBMPと同様にChdと結合し、Chdの活性を阻害する。このように、主にネガティブフィードバックの様式により、Chdを含む背側中胚葉が、胚全体の形成を制御することが示された。さらに、オルファクトメディンタイプ <ref name=Anholt2014><pubmed>25364714</pubmed></ref>  の分泌因子ONT-1がChd、Xlrと複合体を形成してChdの分解を促し、背側中胚葉の大きさを制御する(肥大化しないようにする)ことが明らかになった <ref name=Inomata2008><pubmed>18775317</pubmed></ref> 。
 さて、Chdが発現する原口背唇部を含む一部を胚から切り出して胚を発生させると、腹側胚は細胞塊を形成するのに対し、背側胚は、腹側を含む完全胚になる。これは、背側中胚葉に腹側中胚葉を誘導する活性が存在することを意味する。ChdはADMPというTGFタイプの分泌因子の発現を誘導する。ADMPはChdと同じく背側中胚葉に発現するにもかかわらず、それ自体はALK-2受容体に結合してBMPシグナルを刺激(Smad1をリン酸化)し、中胚葉を腹側化する活性を持つ。また、ADMPはBMPと同様にChdと結合し、Chdの活性を阻害する。このように、主にネガティブフィードバックの様式により、Chdを含む背側中胚葉が、胚全体の形成を制御することが示された。さらに、オルファクトメディンタイプ <ref name=Anholt2014><pubmed>25364714</pubmed></ref>  の分泌因子ONT-1がChd、Xlrと複合体を形成してChdの分解を促し、背側中胚葉の大きさを制御する(肥大化しないようにする)ことが明らかになった <ref name=Inomata2008><pubmed>18775317</pubmed></ref> 。
 ほかにも、BAMBI(BMP And Activin Membrane Bound Inhibitor)<ref name=Chen2007><pubmed>17661381</pubmed></ref>  <ref name=Onichtchouk1999><pubmed>10519551</pubmed></ref> やCV2(Crossveinless-2)<ref name=Ikeya2006><pubmed>17035289</pubmed></ref>  <ref name=Ambrosio2008><pubmed>18694564</pubmed></ref> などのようにchdに結合する因子が単離され、機能解析が行われている。このように、Chdの活性を阻害するものと保護するものがChdと結合、あるいは転写レベルで発現して制御関係を形成することにより、背側中胚葉(特にオーガナイザー領域)の大きさを決定している<ref name=Plouhinec2009><pubmed>20066084</pubmed></ref> 。
 ほかにも、BAMBI(BMP And Activin Membrane Bound Inhibitor)<ref name=Chen2007><pubmed>17661381</pubmed></ref>  <ref name=Onichtchouk1999><pubmed>10519551</pubmed></ref> やCV2(Crossveinless-2)<ref name=Ikeya2006><pubmed>17035289</pubmed></ref>  <ref name=Ambrosio2008><pubmed>18694564</pubmed></ref> などのようにchdに結合する因子が単離され、機能解析が行われている。このように、Chdの活性を阻害するものと保護するものがChdと結合、あるいは転写レベルで発現して制御関係を形成することにより、背側中胚葉(特にオーガナイザー領域)の大きさを決定している<ref name=Plouhinec2009><pubmed>20066084</pubmed></ref> 。


無脊椎動物におけるコーディンの相同遺伝子
== 無脊椎動物における相同遺伝子 ==


 ショウジョウバエでは、short gastrulation(sog)がblastoderm(細胞性胞胚期)の時期に胚の腹側に発現し、Decapentaplegic(dpp)という分泌因子と拮抗して働く <ref name=Biehs1996><pubmed>8918893</pubmed></ref> 。なお、sogは膜貫通ドメインを持ち、細胞膜にアンカーされる。またSogは細胞外ドメインにChd同様のシステインリッチドメインをもつタンパク質をコードし、ショウジョウバエの神経発生を促進する。一方、DPPはそれを抑制する効果があるため、Sog/Dppの関係はChd/BMPの関係に対応している。さらに、ショウジョウバエのsogをコードするmRNAをカエル胚に注入すると2次軸が形成された <ref name=Holley1995><pubmed>7617035</pubmed></ref> 。これらの事実から、ショウジョウバエsog(腹側に発現する)と脊椎動物のChd(背側に発現する)は相同遺伝子であり、背腹軸が逆転して進化したものと考えられた(「神経誘導」の項目も参照) <ref name=De Robertis1996><pubmed>8598900</pubmed></ref> 。Xolloid/Tolloid <ref name=Clark1999><pubmed>10331975</pubmed></ref>  やTsgの相同遺伝子であるTolloidやTwisted Gastrulationもショウジョウバエに存在し、脊椎動物のChdやBMPと同様にSOGやDPPと相互作用する <ref name=Yu2000><pubmed>10769238</pubmed></ref> 。
 ショウジョウバエでは、short gastrulation(sog)がblastoderm(細胞性胞胚期)の時期に胚の腹側に発現し、Decapentaplegic(dpp)という分泌因子と拮抗して働く <ref name=Biehs1996><pubmed>8918893</pubmed></ref> 。なお、sogは膜貫通ドメインを持ち、細胞膜にアンカーされる。またSogは細胞外ドメインにChd同様のシステインリッチドメインをもつタンパク質をコードし、ショウジョウバエの神経発生を促進する。一方、DPPはそれを抑制する効果があるため、Sog/Dppの関係はChd/BMPの関係に対応している。さらに、ショウジョウバエのsogをコードするmRNAをカエル胚に注入すると2次軸が形成された <ref name=Holley1995><pubmed>7617035</pubmed></ref> 。これらの事実から、ショウジョウバエsog(腹側に発現する)と脊椎動物のChd(背側に発現する)は相同遺伝子であり、背腹軸が逆転して進化したものと考えられた(「神経誘導」の項目も参照) <ref name=De Robertis1996><pubmed>8598900</pubmed></ref> 。Xolloid/Tolloid <ref name=Clark1999><pubmed>10331975</pubmed></ref>  やTsgの相同遺伝子であるTolloidやTwisted Gastrulationもショウジョウバエに存在し、脊椎動物のChdやBMPと同様にSOGやDPPと相互作用する <ref name=Yu2000><pubmed>10769238</pubmed></ref> 。


マウスにおけるコーディンの機能
== マウスにおける機能 ==


 哺乳類におけるChdの役割については、特にマウスにおける遺伝子個体を用いた機能解析の報告が存在する <ref name=Bachiller2000><pubmed>10688202</pubmed></ref> 。chd単独のノックアウトマウスは、耳胞の発達や下顎形成に影響が及ぶもののその表現型はマウスの系統依存的であり、いずれも生存は可能である <ref name=Bachiller2000><pubmed>10688202</pubmed></ref><ref name=Choi2009><pubmed>19247433</pubmed></ref> 。したがって、神経発生に関しては他の遺伝子(特にnoggin)によって相補されることが示唆された。そこで、chdとnogginのダブルノックアウトマウスを作成して解析したところ、AVE(前方臓側内胚葉)自体の形成には異常はみられなかったが、頭部神経領域を含む頭部構造の形成が著しく阻害されることが明らかになった。このことは、(1) AVEによる頭部の発生は結節(ノード)の存在に依存していること、(2) 体幹部の発生自体はchordinの存在には依存しないこと、を意味する。
 哺乳類におけるChdの役割については、特にマウスにおける遺伝子個体を用いた機能解析の報告が存在する <ref name=Bachiller2000><pubmed>10688202</pubmed></ref> 。chd単独のノックアウトマウスは、耳胞の発達や下顎形成に影響が及ぶもののその表現型はマウスの系統依存的であり、いずれも生存は可能である <ref name=Bachiller2000><pubmed>10688202</pubmed></ref><ref name=Choi2009><pubmed>19247433</pubmed></ref> 。したがって、神経発生に関しては他の遺伝子(特にnoggin)によって相補されることが示唆された。そこで、chdとnogginのダブルノックアウトマウスを作成して解析したところ、AVE(前方臓側内胚葉)自体の形成には異常はみられなかったが、頭部神経領域を含む頭部構造の形成が著しく阻害されることが明らかになった。このことは、(1) AVEによる頭部の発生は結節(ノード)の存在に依存していること、(2) 体幹部の発生自体はchordinの存在には依存しないこと、を意味する。
 マウスでは頭部と体幹部の発生は別の細胞集団によって制御される。頭部の発生はAVE(anterior visceral endoderm; 前方臓側内胚葉)<ref name=Stower2014><pubmed>25349454</pubmed></ref> によって誘導される一方、体幹部は結節(ノード)とanterior primitive streak(APS; 原条)によって別々に誘導される。Chordin(と、それと同様の機能を持つNoggin)は原条には発現するがAVEには発現しないため、AVEの発生が結節に依存するのか、独立に発生するのかは議論があった。このノックアウトマウスの解析により、AVEの機能(頭部神経を誘導する機能)が結節に依存することが明らかになった。
 マウスでは頭部と体幹部の発生は別の細胞集団によって制御される。頭部の発生はAVE(anterior visceral endoderm; 前方臓側内胚葉)<ref name=Stower2014><pubmed>25349454</pubmed></ref> によって誘導される一方、体幹部は結節(ノード)とanterior primitive streak(APS; 原条)によって別々に誘導される。Chordin(と、それと同様の機能を持つNoggin)は原条には発現するがAVEには発現しないため、AVEの発生が結節に依存するのか、独立に発生するのかは議論があった。このノックアウトマウスの解析により、AVEの機能(頭部神経を誘導する機能)が結節に依存することが明らかになった。
 コーディンと相互作用するタンパク質をコードする遺伝子のうち、Tsgのノックアウトマウスは出生時に死亡し、頭部形成不全、骨化不全、骨格異常など、全身性の表現型を呈する。一部のノックアウト個体は生存するが、成長不全である <ref name=Petryk2004><pubmed>15013800</pubmed></ref><ref name=Zakin2004><pubmed>14681194</pubmed></ref> 。Tolloidに関しては、マウスのTolloid-like-1(Tll1)のノックアウトマウスが心臓の中隔形成に異常をきたし、胚性致死となる <ref name=Clark1999><pubmed>10331975</pubmed></ref><ref name=Ge2006><pubmed>16622848</pubmed></ref> 。カエルや魚類のSzlに最も近いマウスの遺伝子はsFRP(sFRP1-6)と呼ばれるSecreted frizzled-related proteinだが、これら6種類の遺伝子の中にszlと活性(Tsg/BMP1の活性を阻害する)がまったく同じものはない <ref name=Bijakowski2012><pubmed>22825851</pubmed></ref> 。最も構造的に近いsFRP2の単独の遺伝子変異では表現型がみられないが、sFRP1とのダブルノックアウトにより、未分節中胚葉(presomatic mesoderm)の細胞移動が起こらなくなり、胚の前後軸に沿った伸長が抑制される <ref name=Satoh2006><pubmed>16467359</pubmed></ref> 。
 コーディンと相互作用するタンパク質をコードする遺伝子のうち、Tsgのノックアウトマウスは出生時に死亡し、頭部形成不全、骨化不全、骨格異常など、全身性の表現型を呈する。一部のノックアウト個体は生存するが、成長不全である <ref name=Petryk2004><pubmed>15013800</pubmed></ref><ref name=Zakin2004><pubmed>14681194</pubmed></ref> 。Tolloidに関しては、マウスのTolloid-like-1(Tll1)のノックアウトマウスが心臓の中隔形成に異常をきたし、胚性致死となる <ref name=Clark1999><pubmed>10331975</pubmed></ref><ref name=Ge2006><pubmed>16622848</pubmed></ref> 。カエルや魚類のSzlに最も近いマウスの遺伝子はsFRP(sFRP1-6)と呼ばれるSecreted frizzled-related proteinだが、これら6種類の遺伝子の中にszlと活性(Tsg/BMP1の活性を阻害する)がまったく同じものはない <ref name=Bijakowski2012><pubmed>22825851</pubmed></ref> 。最も構造的に近いsFRP2の単独の遺伝子変異では表現型がみられないが、sFRP1とのダブルノックアウトにより、未分節中胚葉(presomatic mesoderm)の細胞移動が起こらなくなり、胚の前後軸に沿った伸長が抑制される <ref name=Satoh2006><pubmed>16467359</pubmed></ref> 。
 このように、カエルで解析された因子の機能はマウスとは必ずしも一致していない。これは、カエルの原口背唇部と、マウスの原条・AVEの機能の違いや、相同遺伝子の重複(冗長性の獲得)・収斂などが原因として考えられる。
 このように、カエルで解析された因子の機能はマウスとは必ずしも一致していない。これは、カエルの原口背唇部と、マウスの原条・AVEの機能の違いや、相同遺伝子の重複(冗長性の獲得)・収斂などが原因として考えられる。
 なお2020年現在、ヒトにおいてchd遺伝子単独の変異によって引き起こされる遺伝性疾患は報告されていない。
 なお2020年現在、ヒトにおいてchd遺伝子単独の変異によって引き起こされる遺伝性疾患は報告されていない。


コーディンに類似したタンパク質
== コーディンに類似したタンパク質 ==


 Chdと類似したタンパク質をコードする遺伝子として、Chordin-like1(CHRDL1; Ventroptin)<ref name=Sakuta2001><pubmed>11441185</pubmed></ref> とChordin-like2(CHRDL2)が単離された<ref name=Nakayama2004><pubmed>14660436</pubmed></ref> 。これらはChordin(1000アミノ酸弱からなる)に比べていずれも450アミノ酸程度と短いが、3つのシステインリッチリピート(cysteine-rich repeat)を含む領域を持つという意味でChordinと構造的に類似し(図1)、いずれもBMPのアンタゴニストとして働く <ref name=Nakayama2004><pubmed>14660436</pubmed></ref><ref name=Sakuta2001><pubmed>11441185</pubmed></ref> 。CHRDL1はニワトリ胚では網膜の腹側に発現し、角膜から脳への視神経の投射に影響を及ぼすことが報告されている <ref name=Sakuta2001><pubmed>11441185</pubmed></ref> 。Chrdl1のモルフォリノアンチセンスオリゴを注入したカエル胚では、角膜の巨大化(megalocornea)の表現型が見られ、ヒトでも同様の症状が報告されている<ref name=Pfirrmann2015><pubmed>25712132</pubmed></ref> 。Chrdl2は軟骨細胞、生殖器官の結合組織での発現がみられている <ref name=Nakayama2004><pubmed>14660436</pubmed></ref> 。
 Chdと類似したタンパク質をコードする遺伝子として、Chordin-like1(CHRDL1; Ventroptin)<ref name=Sakuta2001><pubmed>11441185</pubmed></ref> とChordin-like2(CHRDL2)が単離された<ref name=Nakayama2004><pubmed>14660436</pubmed></ref> 。これらはChordin(1000アミノ酸弱からなる)に比べていずれも450アミノ酸程度と短いが、3つのシステインリッチリピート(cysteine-rich repeat)を含む領域を持つという意味でChordinと構造的に類似し(図1)、いずれもBMPのアンタゴニストとして働く <ref name=Nakayama2004><pubmed>14660436</pubmed></ref><ref name=Sakuta2001><pubmed>11441185</pubmed></ref> 。CHRDL1はニワトリ胚では網膜の腹側に発現し、角膜から脳への視神経の投射に影響を及ぼすことが報告されている <ref name=Sakuta2001><pubmed>11441185</pubmed></ref> 。Chrdl1のモルフォリノアンチセンスオリゴを注入したカエル胚では、角膜の巨大化(megalocornea)の表現型が見られ、ヒトでも同様の症状が報告されている<ref name=Pfirrmann2015><pubmed>25712132</pubmed></ref> 。Chrdl2は軟骨細胞、生殖器官の結合組織での発現がみられている <ref name=Nakayama2004><pubmed>14660436</pubmed></ref> 。
47行目: 67行目:


(図3)背側中胚葉(多くは原口背唇部)と腹側中胚葉に発現する遺伝子群 (A) と、それらの間に存在する制御関係 (B)。<ref name=De Robertis2004><pubmed>15473842</pubmed></ref>  <ref name=Ambrosio2008><pubmed>18694564</pubmed></ref>  <ref name=Plouhinec2009><pubmed>20066084</pubmed></ref> をもとに作成。
(図3)背側中胚葉(多くは原口背唇部)と腹側中胚葉に発現する遺伝子群 (A) と、それらの間に存在する制御関係 (B)。<ref name=De Robertis2004><pubmed>15473842</pubmed></ref>  <ref name=Ambrosio2008><pubmed>18694564</pubmed></ref>  <ref name=Plouhinec2009><pubmed>20066084</pubmed></ref> をもとに作成。
<ref name=Ambrosio2008><pubmed>18694564</pubmed></ref>
<ref name=Anholt2014><pubmed>25364714</pubmed></ref>
<ref name=Bachiller2000><pubmed>10688202</pubmed></ref>
<ref name=Biehs1996><pubmed>8918893</pubmed></ref>
<ref name=Bijakowski2012><pubmed>22825851</pubmed></ref>
<ref name=Chang2001><pubmed>11260717</pubmed></ref>
<ref name=Chen2007><pubmed>17661381</pubmed></ref>
<ref name=Choi2009><pubmed>19247433</pubmed></ref>
<ref name=Clark1999><pubmed>10331975</pubmed></ref>
<ref name=Collavin2003><pubmed>12506010</pubmed></ref>
<ref name=Dale2002><pubmed>12464431</pubmed></ref>
<ref name=De Robertis2006><pubmed>16482093</pubmed></ref>
<ref name=De Robertis2004><pubmed>15473842</pubmed></ref>
<ref name=De Robertis2000><pubmed>11252746</pubmed></ref>
<ref name=De Robertis1996><pubmed>8598900</pubmed></ref>
<ref name=De Robertis2001><pubmed>11291846</pubmed></ref>
<ref name=Ge2006><pubmed>16622848</pubmed></ref>
<ref name=Hemmati-Brivanlou1994><pubmed>8168135</pubmed></ref>
<ref name=Holley1995><pubmed>7617035</pubmed></ref>
<ref name=Ikeya2006><pubmed>17035289</pubmed></ref>
<ref name=Inomata2008><pubmed>18775317</pubmed></ref>
<ref name=Khokha2005><pubmed>15737935</pubmed></ref>
<ref name=Larrain2000><pubmed>10648240</pubmed></ref>
<ref name=Lee2006><pubmed>16413488</pubmed></ref>
<ref name=Lee2014><pubmed>25234468</pubmed></ref>
<ref name=Matsuo-Takasaki1999><pubmed>10559482</pubmed></ref>
<ref name=Matsuo-Takasaki2005><pubmed>16079156</pubmed></ref>
<ref name=Mizuseki1998><pubmed>9435279</pubmed></ref>
<ref name=Muraoka2006><pubmed>16518392</pubmed></ref>
<ref name=Nakayama2004><pubmed>14660436</pubmed></ref>
<ref name=Onichtchouk1999><pubmed>10519551</pubmed></ref>
<ref name=Petryk2004><pubmed>15013800</pubmed></ref>
<ref name=Pfirrmann2015><pubmed>25712132</pubmed></ref>
<ref name=Piccolo1997><pubmed>9363949</pubmed></ref>
<ref name=Piccolo1996><pubmed>8752213</pubmed></ref>
<ref name=Plouhinec2009><pubmed>20066084</pubmed></ref>
<ref name=Sakuta2001><pubmed>11441185</pubmed></ref>
<ref name=Sander2001><pubmed>11291840</pubmed></ref>
<ref name=Sasai1995><pubmed>7630399</pubmed></ref>
<ref name=Satoh2006><pubmed>16467359</pubmed></ref>
<ref name=Smith1992><pubmed>1339313</pubmed></ref>
<ref name=Stower2014><pubmed>25349454</pubmed></ref>
<ref name=Suzuki1994><pubmed>7937936</pubmed></ref>
<ref name=Tao2005><pubmed>15705857</pubmed></ref>
<ref name=Xie2005><pubmed>15604098</pubmed></ref>
<ref name=Xu1995><pubmed>7612010</pubmed></ref>
<ref name=Yu2000><pubmed>10769238</pubmed></ref>
<ref name=Zakin2004><pubmed>14681194</pubmed></ref>