「シナプスタグ仮説」の版間の差分

49行目: 49行目:
== シナプスタグの実体についての考え ==
== シナプスタグの実体についての考え ==
 二経路実験は、[[PKM zeta|タンパク質キナーゼM&zeta;]] (protein kinase M&zeta;, PKM&zeta;)<ref name=ref6><pubmed>15958741</pubmed></ref>([89]?)、[[cAMP依存性タンパク質キナーゼ]] ([[cAMP-dependent protein kinase]], [[A-kinase]], [[PKA]])、[[MEK1/2]]、[[カルシウム/カルモジュリン依存性タンパク質キナーゼII]] ([[calcium/calmodulin dependent protein kinase|calcium/calmodulin dependent protein kinase]], [[CaMKⅡ]])([910]?)<ref name=ref7><pubmed>17494693</pubmed></ref>、[[ニューロプシン]] ([10じゃなく11]? <ref name=ref8><pubmed>18216192</pubmed></ref> などが合性可塑性に必要であることを明らかにした。 これらの論文の著者らはこれがシナプスタグに関与すると推察しているが、解釈には注意を要する。
 二経路実験は、[[PKM zeta|タンパク質キナーゼM&zeta;]] (protein kinase M&zeta;, PKM&zeta;)<ref name=ref6><pubmed>15958741</pubmed></ref>([89]?)、[[cAMP依存性タンパク質キナーゼ]] ([[cAMP-dependent protein kinase]], [[A-kinase]], [[PKA]])、[[MEK1/2]]、[[カルシウム/カルモジュリン依存性タンパク質キナーゼII]] ([[calcium/calmodulin dependent protein kinase|calcium/calmodulin dependent protein kinase]], [[CaMKⅡ]])([910]?)<ref name=ref7><pubmed>17494693</pubmed></ref>、[[ニューロプシン]] ([10じゃなく11]? <ref name=ref8><pubmed>18216192</pubmed></ref> などが合性可塑性に必要であることを明らかにした。 これらの論文の著者らはこれがシナプスタグに関与すると推察しているが、解釈には注意を要する。
'''ここから?'''
 
 一般に後期可塑性には、先行する初期可塑性、新規タンパク質合成と輸送、シナプス部での新規タンパク質の機能発現といった複数 の内部過程が必要と考えられており、シナプスタグはこれらの内部過程の一つ、あるいは内部過程を調節するシナプス活動、であると考えられる。二経路実験ではこれら複数の過程を経た最終結果である連合性可塑性の有無を測定するので、ある分子が連合性後期 可塑性に必要だとしても、それがシナプスタグの仕組みに関与するかどうかを二経路実験から決定することは原理的にはできず、これらの内部過程の多くがNMDA受容体活動をきっかけに始まると考えられる状況で、一定の実験操作が内部過程の特定のものだけに影響するという仮定が必要になる。
 一般に後期可塑性には、先行する初期可塑性、新規タンパク質合成と輸送、シナプス部での新規タンパク質の機能発現といった複数 の内部過程が必要と考えられており、シナプスタグはこれらの内部過程の一つ、あるいは内部過程を調節するシナプス活動、であると考えられる。二経路実験ではこれら複数の過程を経た最終結果である連合性可塑性の有無を測定するので、ある分子が連合性後期 可塑性に必要だとしても、それがシナプスタグの仕組みに関与するかどうかを二経路実験から決定することは原理的にはできず、これらの内部過程の多くがNMDA受容体活動をきっかけに始まると考えられる状況で、一定の実験操作が内部過程の特定のものだけに影響するという仮定が必要になる。


Okadaらのシナプスタグの実証実験[5]では、上記内部過程のうち輸送の一部がシナプス活動依存的であることをシナプスタグと捉えている。細胞体で合成され樹状突起を非特異的に輸送されるタンパク質は、シナプス部での機能に先立ってシナプスに取り込まれる (capture)。この二つの過程を分けてsynaptic tagging and capture という語が用いられることがある。Okadaら[5]の結果は、capture が入力特異的に起きる可能性を示唆するので、capture がtaggingの機能を持つとも言える。この考えを進めれば、輸送されるタンパク質毎や輸送過程の種類に応じて各々のシナプスタグがあると考えることもできるし、全ての輸送過程に共通するものがあってこれの調節をシナプスタグとする考えもあるだろう。輸送調節以外のシナプスタグも考えられる。captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特にシナプス後膜肥厚 (postsynaptic density, PSD) の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。Frey とMorrisの初期の実験で考えられたsensitization仮説はこの方向の考え方であった[3]。このように、シナプスタグの定義は一義的ではない。
Okadaらのシナプスタグの実証実験([5]?)では、上記内部過程のうち輸送の一部がシナプス活動依存的であることをシナプスタグと捉えている。細胞体で合成され樹状突起を非特異的に輸送されるタンパク質は、シナプス部での機能に先立ってシナプスに取り込まれる (capture)。この二つの過程を分けてsynaptic tagging and capture という語が用いられることがある。Okadaら[5]の結果は、capture が入力特異的に起きる可能性を示唆するので、capture がtaggingの機能を持つとも言える。この考えを進めれば、輸送されるタンパク質毎や輸送過程の種類に応じて各々のシナプスタグがあると考えることもできるし、全ての輸送過程に共通するものがあってこれの調節をシナプスタグとする考えもあるだろう。輸送調節以外のシナプスタグも考えられる。captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特にシナプス後膜肥厚 (postsynaptic density, PSD) の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。Frey とMorrisの初期の実験で考えられたsensitization仮説はこの方向の考え方であった([3]?)。このように、シナプスタグの定義は一義的ではない。100を超える遺伝子が 後期可塑性に伴って新規に発現誘導される([1214]?)。これらのタンパク質の一つがシナプス部で機能すればシナプス可塑性は持続性を獲得する(運命が決まる、実際に獲得する、獲得して持続するなど全てを含む)というものがあるのかもしれない。一方で、これらのタンパク質は異なる機能カテゴリーに属し、発現時期も異なることから[13 ]、シナプス伝達効率を調節するいくつかの異なる表現形それぞれが決定的に持続型に移行するためのシナプスタグがある可能性がある( [14]?)。
'''ここまで?'''
 
ナプスタグの実体とされる分子はまだ確定したものはない。Homer-1aの
 
 シナプスタグの分子的実体としては、Okadaらはprotein kinase Gの活性化を示唆しており、そのリン酸化基質の機能が輸送調節に関わる可能性がある([5 ]?)。岡本らは[[アクチン]]の重要性を提唱している<ref name=ref15361876 ><pubmed>15361876</pubmed></ref><ref name=ref19996366 ><pubmed> 19996366 </pubmed></ref>。([11じゃなく15][12]じゃなく16]?)アクチンは[[興奮性シナプス]]での主要な[[細胞骨格]]成分として[[樹状突起棘]]([[スパイン]])の形態形成と維持に関わっている他、その他の多数のタンパク質の結合部位としても機能している<ref name=ref19996366 />([12じゃなく16]?)。薬理 学的にF-アクチンを増加させると、アクチン結合タンパク質がシナプスにて増加する([15]?)。一方、アクチン重合を阻害すると、後期長期増強が起こらなくなる([17]?)。LTP誘導に伴い、アクチンが増加する事によりスパインの容積が増大する事で、シナプスの結合容量が増える。これは可塑性が起こったシナプス特異的にNMDA受容体活性化依存的に起こり(上の条件1.)、またタンパク質合成は必要としない(上の条件3.)。一回形成されたアクチンは数十分の単位で安定である(上の条件4.)。(((これにより、アクチンは新規に合成されたタンパク質をcaptureするシナプスタグとしての条件を満たしている。実際に、薬理学的にアクチンを増加させると、アクチン結合タンパク質がシナプスにて増加する<ref name=ref15361876 />。一方、アクチン重合を阻害する事により、後期長期増強が起こらなくなる<ref name=ref19793974 ><pubmed>19793974</pubmed></ref>)))消去!。従って、アクチンの重合調節はシナプスタグの要件を満たしている。


 シナプスタグの分子的実態としては、岡本らは[[アクチン]]の重要性を提唱している<ref name=ref15361876 ><pubmed>15361876</pubmed></ref><ref name=ref19996366 ><pubmed> 19996366 </pubmed></ref>。アクチンは[[興奮性シナプス]]での主要な[[細胞骨格]]成分として[[樹状突起棘]]([[スパイン]])の形態形成と維持に関わっている他、その他の多数のタンパク質の結合部位としても機能している<ref name=ref19996366 />。LTP誘導に伴い、アクチンが増加する事によりスパインの容積が増大する事で、シナプスの結合容量が増える。これは可塑性が起こったシナプス特異的にNMDA受容体活性化依存的に起こり(上の条件1.)、またタンパク質合成は必要としない(上の条件3.)。一回形成されたアクチンは数十分の単位で安定である(上の条件4.)。これにより、アクチンは新規に合成されたタンパク質をcaptureするシナプスタグとしての条件を満たしている。実際に、薬理学的にアクチンを増加させると、アクチン結合タンパク質がシナプスにて増加する<ref name=ref15361876 />。一方、アクチン重合を阻害する事により、後期長期増強が起こらなくなる<ref name=ref19793974 ><pubmed>19793974</pubmed></ref>。
 超解像顕微鏡の使用により、シナプス前後の分子構築が詳細に解明されつつある。シナプス前の神経伝達物質放出機構と、シナプス後部の受容体を中心としたクラスターは向かい合っているという観察はシナプス伝達効率を高める上で重要な配置であり、興味深い([18]?)。シナプスタグはこの配置を調節するものだとすれば、細胞接着因子や各クラスターの構成因子などが重要な候補となる。例えばEph-Ephlinはシナプス前後の結合に関わりLTPに必要で、前述のニューロプシンにより切断されるなど、重要な因子であると考えられる([19]?)。


 後期可塑性に伴って新規に発現誘導される遺伝子はVesl-S以外にも少なくとも 100 近くに及ぶ<ref name=ref9><pubmed>10820183</pubmed></ref>。新規タンパク質の機能やシナプス部への局在・活性化の機構はタンパク質毎に異なるだろうから、シナプスタグはタンパク質毎に異なる仕組みである可能性が考えられる。局所合成によりシナプス内の環境が調節された後に、[[最初期遺伝子]]産物群、さらに遅れてやってくる遺伝子産物群などが作用することで可塑性が起きると考えれば、captureとtaggingは入れ子構造になるので厳密に区別できないのではないだろうか。
 (((後期可塑性に伴って新規に発現誘導される遺伝子はVesl-S以外にも少なくとも 100 近くに及ぶ<ref name=ref9><pubmed>10820183</pubmed></ref>。新規タンパク質の機能やシナプス部への局在・活性化の機構はタンパク質毎に異なるだろうから、シナプスタグはタンパク質毎に異なる仕組みである可能性が考えられる。局所合成によりシナプス内の環境が調節された後に、[[最初期遺伝子]]産物群、さらに遅れてやってくる遺伝子産物群などが作用することで可塑性が起きると考えれば、captureとtaggingは入れ子構造になるので厳密に区別できないのではないだろうか。)))消去!


==シナプスタグ仮説の発展==
==シナプスタグ仮説の発展==