「シナプスタグ仮説」の版間の差分

ナビゲーションに移動 検索に移動
 
(同じ利用者による、間の3版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/okadada 岡田 大助]</font><br>
<font size="+1">[http://researchmap.jp/okadada 岡田 大助]</font><br>
''北里大学 医学部 生化学''<br>
''北里大学 医学部 生化学''<br>
DOI:<selfdoi /> 原稿受付日:2012年6月6日 原稿完成日:2015年月日<br>
DOI:<selfdoi /> 原稿受付日:2012年6月6日 原稿完成日:2018年10月14日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科システム神経薬理分野)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科システム神経薬理分野)<br>
</div>
</div>
53行目: 53行目:
 この考えを進めれば、輸送されるタンパク質毎や輸送過程の種類に応じて各々のシナプスタグがあると考えることもできるし、全ての輸送過程に共通するものがあってこれの調節をシナプスタグとする考えもあるだろう。輸送調節以外のシナプスタグも考えられる。Captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特に[[シナプス後膜肥厚]] (postsynaptic density, PSD) の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。
 この考えを進めれば、輸送されるタンパク質毎や輸送過程の種類に応じて各々のシナプスタグがあると考えることもできるし、全ての輸送過程に共通するものがあってこれの調節をシナプスタグとする考えもあるだろう。輸送調節以外のシナプスタグも考えられる。Captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特に[[シナプス後膜肥厚]] (postsynaptic density, PSD) の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。


 FreyとMorrisの初期の実験で考えられた[[sensitization仮説]]はこの方向の考え方であった<ref name=ref3/>。このように、シナプスタグの定義は一義的ではない。100を超える遺伝子が後期可塑性に伴って新規に発現誘導される<ref name=Matsuo2000><pubmed>10820183</pubmed></ref>。これらのタンパク質の一つがシナプス部で機能すればシナプス可塑性は持続性を獲得する(運命が決まる、実際に獲得する、獲得して持続するなど全てを含む)というものがあるのかもしれない。一方で、これらのタンパク質は異なる機能カテゴリーに属し、発現時期も異なることから<ref><pubmed>22802965 </pubmed></ref>、シナプス伝達効率を調節するいくつかの異なる表現形それぞれが決定的に持続型に移行するためのシナプスタグがある可能性がある<ref>'''D Okada, K Inokuchi'''<br>"Activity-Dependent Protein Transport as a Synaptic Tag "in "Synaptic tagging and capture, From synapses to behaviour"<br>'' S Sajikumar ed. Springer, NY, pp79-98'':2015</ref>。
 FreyとMorrisの初期の実験で考えられた[[sensitization仮説]]はこの方向の考え方であった<ref name=ref5/>。このように、シナプスタグの定義は一義的ではない。100を超える遺伝子が後期可塑性に伴って新規に発現誘導される<ref name=Matsuo2000><pubmed>10820183</pubmed></ref>。これらのタンパク質の一つがシナプス部で機能すればシナプス可塑性は持続性を獲得する(運命が決まる、実際に獲得する、獲得して持続するなど全てを含む)というものがあるのかもしれない。一方で、これらのタンパク質は異なる機能カテゴリーに属し、発現時期も異なることから<ref><pubmed>22802965 </pubmed></ref>、シナプス伝達効率を調節するいくつかの異なる表現形それぞれが決定的に持続型に移行するためのシナプスタグがある可能性がある<ref>'''D Okada, K Inokuchi'''<br>"Activity-Dependent Protein Transport as a Synaptic Tag "in "Synaptic tagging and capture, From synapses to behaviour"<br>'' S Sajikumar ed. Springer, NY, pp79-98'':2015</ref>。


 シナプスタグの実体とされる分子はまだ確定したものはない。Homer1aのシナプスタグの分子的実体としては、岡田らはprotein kinase Gの活性化を示唆しており、そのリン酸化基質の機能が輸送調節に関わる可能性がある<ref name=ref3/>([5 ]?)。
 シナプスタグの実体とされる分子はまだ確定したものはない。Homer1aのシナプスタグの分子的実体としては、岡田らはprotein kinase Gの活性化を示唆しており、そのリン酸化基質の機能が輸送調節に関わる可能性がある<ref name=ref3/>


 岡本らは[[アクチン]]の重要性を提唱している<ref name=ref15361876 ><pubmed>15361876</pubmed></ref><ref name=ref19996366 ><pubmed> 19996366 </pubmed></ref>。アクチンは[[興奮性シナプス]]での主要な[[細胞骨格]]成分としてスパインの形態形成と維持に関わっている他、その他の多数のタンパク質の結合部位としても機能している<ref name=ref19996366 />。薬理学的にF-アクチンを増加させると、アクチン結合タンパク質がシナプスにて増加する<ref name=ref15361876 />。一方、アクチン重合を阻害すると、後期長期増強が起こらなくなる<ref name=ref19793974 ><pubmed>19793974</pubmed></ref>。LTP誘導に伴い、アクチンが増加する事によりスパインの容積が増大する事で、シナプスの結合容量が増える。これは可塑性が起こったシナプス特異的にNMDA受容体活性化依存的に起こり(上の条件1.)、またタンパク質合成は必要としない(上の条件3.)。一回形成されたアクチンは数十分の単位で安定である(上の条件4.)。従って、アクチンの重合調節はシナプスタグの要件を満たしている。
 岡本らは[[アクチン]]の重要性を提唱している<ref name=ref15361876 ><pubmed>15361876</pubmed></ref><ref name=ref19996366 ><pubmed> 19996366 </pubmed></ref>。アクチンは[[興奮性シナプス]]での主要な[[細胞骨格]]成分としてスパインの形態形成と維持に関わっている他、その他の多数のタンパク質の結合部位としても機能している<ref name=ref19996366 />。薬理学的にF-アクチンを増加させると、アクチン結合タンパク質がシナプスにて増加する<ref name=ref15361876 />。一方、アクチン重合を阻害すると、後期長期増強が起こらなくなる<ref name=ref19793974 ><pubmed>19793974</pubmed></ref>。LTP誘導に伴い、アクチンが増加する事によりスパインの容積が増大する事で、シナプスの結合容量が増える。これは可塑性が起こったシナプス特異的にNMDA受容体活性化依存的に起こり(上の条件1.)、またタンパク質合成は必要としない(上の条件3.)。一回形成されたアクチンは数十分の単位で安定である(上の条件4.)。従って、アクチンの重合調節はシナプスタグの要件を満たしている。
62行目: 62行目:


==発展==
==発展==
 [[シナプス前]]線維が運ぶ情報はシナプス後細胞が興奮すれば次の細胞に伝えられる。この興奮しやすさの制御がシナプス可塑性の機能である。細胞が受ける複数の入力の統合によりその細胞が発火するかどうかが決まるので、シナプス可塑性により増強されたシナプスは発火に貢献する確率が高くなり、そのシナプスが運んでいる情報が次に伝えられやすくなる。この連鎖により、ある入力で一定の神経回路が作動するようになる。シナプス可塑性を起こすシナプスを決めるということは、シナプスを選ぶことにより伝える情報を選ぶということである。シナプス可塑性は記憶などの脳高次機能を担う神経回路網の経験依存的形成に関わる重要な細胞レベルの仕組みとして研究が盛んである。シナプスタグは後期シナプス可塑性の仕組みの一部として、何を覚えるかなど情報の選別に関わる仕組みと考えられる。このため、より高次レベルの研究においても、シナプスの目印機能という意味でタグという言葉が以下のように使われることがある。また、シナプス伝達の長期抑圧についても同様の仕組みがあるとされている<ref name=ref7/><[10]
 [[シナプス前]]線維が運ぶ情報はシナプス後細胞が興奮すれば次の細胞に伝えられる。この興奮しやすさの制御がシナプス可塑性の機能である。細胞が受ける複数の入力の統合によりその細胞が発火するかどうかが決まるので、シナプス可塑性により増強されたシナプスは発火に貢献する確率が高くなり、そのシナプスが運んでいる情報が次に伝えられやすくなる。この連鎖により、ある入力で一定の神経回路が作動するようになる。シナプス可塑性を起こすシナプスを決めるということは、シナプスを選ぶことにより伝える情報を選ぶということである。シナプス可塑性は記憶などの脳高次機能を担う神経回路網の経験依存的形成に関わる重要な細胞レベルの仕組みとして研究が盛んである。シナプスタグは後期シナプス可塑性の仕組みの一部として、何を覚えるかなど情報の選別に関わる仕組みと考えられる。このため、より高次レベルの研究においても、シナプスの目印機能という意味でタグという言葉が以下のように使われることがある。また、シナプス伝達の長期抑圧についても同様の仕組みがあるとされている<ref name=ref7/>。


=== 局所合成 ===
=== 局所合成 ===
87行目: 87行目:
system consolidation
system consolidation


 海馬で獲得された記憶の一部は時間が経つと[[想起]]に海馬活動が不要になり、皮質の活動により想起されるようになる。この移行を[[システム固定化]]、[[皮質]]依存になった記憶を[[遠隔記憶]]と言う。システム固定化の仕組みの詳細はまだ不明だが、初めに海馬が各モダリティ担当の皮質に情報を送り返し、長い時間をかけて遠隔記憶の想起時に活動する神経回路網を皮質に作ると考えられる<ref><pubmed>28386011 </pubmed></ref>(28N)。この時、複数の皮質に分散したシステム固定化後の記憶が一つの記憶として想起できるためには、これらが目印によってつながっている必要がある。この目印が「タグ」という言葉で表現されている<ref name=ref17><pubmed>21330548</pubmed></ref>。
 海馬で獲得された記憶の一部は時間が経つと[[想起]]に海馬活動が不要になり、皮質の活動により想起されるようになる。この移行を[[システム固定化]]、[[皮質]]依存になった記憶を[[遠隔記憶]]と言う。システム固定化の仕組みの詳細はまだ不明だが、初めに海馬が各モダリティ担当の皮質に情報を送り返し、長い時間をかけて遠隔記憶の想起時に活動する神経回路網を皮質に作ると考えられる<ref><pubmed>28386011 </pubmed></ref>。この時、複数の皮質に分散したシステム固定化後の記憶が一つの記憶として想起できるためには、これらが目印によってつながっている必要がある。この目印が「タグ」という言葉で表現されている<ref name=ref17><pubmed>21330548</pubmed></ref>。


== 関連項目 ==
== 関連項目 ==

案内メニュー