「シナプス小胞」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
31行目: 31行目:


=== 神経伝達物質の再充填 ===
=== 神経伝達物質の再充填 ===
 形質膜上に存在し、放出された神経伝達物質の回収を行なう[[トランスポーター]]が細胞内外の[[wj:|ナトリウム]]イオン勾配で駆動されるのに対して、シナプス小胞膜上の神経伝達物質トランスポーターは[[液胞型プロトンATPase]] (V-ATPase) が形成する[[wj:|プロトン]](水素イオン)の[[電気化学勾配]]によって駆動される<ref name=ref9><pubmed>1979489</pubmed></ref>。
 形質膜上に存在し、放出された神経伝達物質の回収を行なう[[トランスポーター]]が細胞内外の[[wj:ナトリウム|ナトリウム]]イオン勾配で駆動されるのに対して、シナプス小胞膜上の神経伝達物質トランスポーターは[[液胞型プロトンATPase]] (V-ATPase) が形成する[[wj:プロトン|プロトン]](水素イオン)の[[電気化学勾配]]によって駆動される<ref name=ref9><pubmed>1979489</pubmed></ref>。


 V-ATPaseは少なくとも13個のサブユニットからなり分子量800 kDaを越える巨大な分子複合体で、1つのV-ATPase複合体はシナプス小胞総タンパク質の10%近くを占める。1つの[[ATP]]を[[ADP]]に[[wj:|加水分解]]する際に発生するエネルギーを用いて、約4つのプロトンを小胞内腔に運ぶことにより、膜電位とpH勾配を形成する。
 V-ATPaseは少なくとも13個のサブユニットからなり分子量800 kDaを越える巨大な分子複合体で、1つのV-ATPase複合体はシナプス小胞総タンパク質の10%近くを占める。1つの[[ATP]]を[[ADP]]に[[wj:加水分解|加水分解]]する際に発生するエネルギーを用いて、約4つのプロトンを小胞内腔に運ぶことにより、膜電位とpH勾配を形成する。


 膜電位とpH勾配の割合は小胞膜に存在する[[塩化物イオンチャネル]]の活性によって制御されていると考えられている<ref name=ref10><pubmed>17880890</pubmed></ref>。[[哺乳類]]脳内に存在する神経伝達物質の内、正の電荷をもつ[[アセチルコリン]]や[[モノアミン]]類はpH勾配によって輸送されるが、負の電荷をもつ[[グルタミン酸]]は主に膜電位によって輸送される(図2)。[[GABA]]や[[グリシン]]はそれらの中間に位置する。すでにVAChT(アセチル[[コリン]])、[[VMAT1]]/[[VMAT2|2]](モノアミン)、VGLUT1/2/3(グルタミン酸)、VGAT(GABAとグリシン)がクローニングされているが、それぞれのトランスポーターの輸送メカニズムは不明である。最近、VGLUTの相同遺伝子として小胞への[[ATP]]輸送を司るVNUTが同定された<ref name=ref11><pubmed>18375752</pubmed></ref> <ref name=ref12><pubmed>23886392</pubmed></ref>。
 膜電位とpH勾配の割合は小胞膜に存在する[[塩化物イオンチャネル]]の活性によって制御されていると考えられている<ref name=ref10><pubmed>17880890</pubmed></ref>。[[哺乳類]]脳内に存在する神経伝達物質の内、正の電荷をもつ[[アセチルコリン]]や[[モノアミン]]類はpH勾配によって輸送されるが、負の電荷をもつ[[グルタミン酸]]は主に膜電位によって輸送される(図2)。[[GABA]]や[[グリシン]]はそれらの中間に位置する。すでに[[VAChT]](アセチルコリン)、[[VMAT1]]/[[VMAT2|2]](モノアミン)、[[VGLUT1]]/[[VGLUT2|2]]/[[VGLUT3|3]](グルタミン酸)、VGAT(GABAとグリシン)がクローニングされているが、それぞれのトランスポーターの輸送メカニズムは不明である。最近、VGLUTの相同遺伝子として小胞への[[ATP]]輸送を司る[[VNUT]]が同定された<ref name=ref11><pubmed>18375752</pubmed></ref> <ref name=ref12><pubmed>23886392</pubmed></ref>。


 Katzらが提唱したシナプス小胞の[[量子仮説]](Quantal hypothesis)によれば、シナプス小胞内に含まれる神経伝達物質量は一定とされている。しかしながら、小胞型神経伝達物質トランスポーターを過剰発現させるとquantaが増大するとの報告がある<ref name=ref13><pubmed>15103023</pubmed></ref> <ref name=ref14><pubmed>15987952</pubmed></ref>。また、トランスポーターの発現量が減少しているヘテロ[[マウス]]では、てんかん様の症状の他、精神障害や認知機能の低下などの症状が見られることから、シナプス小胞再充填過程の破綻が脳機能に影響を与える可能性が示唆されている<ref name=ref15><pubmed>19171171</pubmed></ref> <ref name=ref16><pubmed>17241289</pubmed></ref>。
 Katzらが提唱したシナプス小胞の[[量子仮説]](Quantal hypothesis)によれば、シナプス小胞内に含まれる神経伝達物質量は一定とされている。しかしながら、小胞型神経伝達物質トランスポーターを過剰発現させるとquantaが増大するとの報告がある<ref name=ref13><pubmed>15103023</pubmed></ref> <ref name=ref14><pubmed>15987952</pubmed></ref>。また、トランスポーターの発現量が減少しているヘテロ[[マウス]]では、[[wj:てんかん|てんかん]]様の症状の他、[[精神障害]]や[[認知機能]]の低下などの症状が見られることから、シナプス小胞再充填過程の破綻が脳機能に影響を与える可能性が示唆されている<ref name=ref15><pubmed>19171171</pubmed></ref> <ref name=ref16><pubmed>17241289</pubmed></ref>。


===エキソサイトーシスの分子機構===
===エキソサイトーシスの分子機構===
[[image:シナプス小胞3.jpg|thumb|350px|'''図3.エキソサイトーシスの分子機構'''<br>A. アクティブゾーン(active zone)には、Munc13, Rim, CASTなどの巨大タンパク質が存在し、Munc18やSyntaxinと複合体を形成している。<br>B. SNARE複合体を形成するとComplexinが結合し、融合を阻害している。C→D. 細胞質にカルシウムが流入すると、Munc18やComplexinが解離し、SynaptotagminがCa2+センサーとして働く。E. 小胞膜と形質膜が融合した後のSNARE複合体はNSFとaSNAPの働きで解離する。]]
[[image:シナプス小胞3.jpg|thumb|350px|'''図3.エキソサイトーシスの分子機構'''<br>A. アクティブゾーン(active zone)には、Munc13, Rim, CASTなどの巨大タンパク質が存在し、Munc18やSyntaxinと複合体を形成している。<br>B. SNARE複合体を形成するとComplexinが結合し、融合を阻害している。C→D. 細胞質にカルシウムが流入すると、Munc18やComplexinが解離し、SynaptotagminがCa<sup>2+</sup>センサーとして働く。E. 小胞膜と形質膜が融合した後のSNARE複合体はNSFとaSNAPの働きで解離する。]]


 シナプス前部におけるエキソサイトーシスは、時空間的に厳密な制御を受けている。活動電位がシナプス前部に到達すると[[電位依存性Ca2+チャネル]]を通じて細胞外から[[CA2|Ca2]]+が流入し、100ミリ秒以内にエキソサイトーシスが起こる。従って、Ca2+依存的なシナプス小胞と形質膜の膜融合過程には、複雑な酵素反応が入る余地がない。すなわち、瞬時に放出可能な一部のシナプス小胞は形質膜に結合(ドッキング)した状態で、Ca2+濃度の上昇によるエキソサイトーシスの惹起に備えていると考えられている。現在では、シナプス小胞のエキソサイトーシスは、以下に詳述する(1)ドッキング、(2)[[プライミング]]、(3)膜融合、の3つの過程が異なる分子で制御されていると考えられている(図3)。
 シナプス前部におけるエキソサイトーシスは、時空間的に厳密な制御を受けている。活動電位がシナプス前部に到達すると[[電位依存性Ca<sup>2+</sup>チャネル|電位依存性Ca2+チャネル]]を通じて細胞外から[[CA2|Ca2]]+が流入し、100ミリ秒以内にエキソサイトーシスが起こる。従って、Ca<sup>2+</sup>依存的なシナプス小胞と形質膜の膜融合過程には、複雑な酵素反応が入る余地がない。すなわち、瞬時に放出可能な一部のシナプス小胞は形質膜に結合(ドッキング)した状態で、Ca<sup>2+</sup>濃度の上昇によるエキソサイトーシスの惹起に備えていると考えられている。現在では、シナプス小胞のエキソサイトーシスは、以下に詳述する(1)[[ドッキング]]、(2)[[プライミング]]、(3)[[膜融合]]、の3つの過程が異なる分子で制御されていると考えられている(図3)。
'''
(1)ドッキング''':シナプス前部には100個〜10万個のシナプス小胞が存在しているが、一部のシナプス小胞はアクティブゾーンと呼ばれる電子顕微鏡で電子密度が高い部位に存在し、形質膜と物理的に接しているように見える。このシナプス小胞の状態をドッキングと呼ぶ。シナプス小胞のドッキングを司るタンパク質として、可溶性タンパク質であるMunc18が知られている。Munc18は形質膜にあるt-SNAREであるSyntaxinの結合タンパク質として同定されたが、その遺伝子欠損マウスではシナプス伝達が完全に消失している<ref name=ref17><pubmed>8247129</pubmed></ref> <ref name=ref18><pubmed>10657302</pubmed></ref>。ニューロンにおいてはシナプス小胞のドッキング過程が破綻している電子顕微鏡像は得られないが、副腎髄質のクロム親和性顆粒細胞では分泌顆粒のドッキングが著しく欠落していることが明らかとなった。現在では、小胞膜に存在するSynaptotagmin(後述)と2つのt-SNARE (Syntaxin, SNAP-25)もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。


(1)ドッキング:シナプス前部には100個〜10万個のシナプス小胞が存在しているが、一部のシナプス小胞はアクティブゾーンと呼ばれる電子顕微鏡で電子密度が高い部位に存在し、形質膜と物理的に接しているように見える。このシナプス小胞の状態をドッキングと呼ぶ。シナプス小胞のドッキングを司るタンパク質として、可溶性タンパク質であるMunc18が知られている。Munc18は形質膜にあるt-SNAREであるSyntaxinの結合タンパク質として同定されたが、その遺伝子欠損マウスではシナプス伝達が完全に消失している<ref name=ref17><pubmed>8247129</pubmed></ref> <ref name=ref18><pubmed>10657302</pubmed></ref>。ニューロンにおいてはシナプス小胞のドッキング過程が破綻している電子顕微鏡像は得られないが、副腎髄質のクロム親和性顆粒細胞では分泌顆粒のドッキングが著しく欠落していることが明らかとなった。現在では、小胞膜に存在するSynaptotagmin(後述)と2つのt-SNARE (Syntaxin, SNAP-25)もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。
'''(2)プライミング''':電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium]]-dependent Activator Protein for Secretion)や Munc13などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー(PIP2やジアシルグリセロール)を介して働いていると考えられる。


(2)プライミング:電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium]]-dependent Activator Protein for Secretion)Munc13などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー(PIP2やジアシルグリセロール)を介して働いていると考えられる。
'''(3)膜融合''':シナプス小胞の形質膜への融合過程においては、3つのSNAREタンパク質が重要な役割を果たしている。James Rothmanらは、[[ゴルジ]]装置における物質輸送に必要な可溶性タンパク質としてNSFとSNAPという二種類のタンパク質を同定した。更にRothmanは、これら可溶性タンパク質の膜受容体(SNAP receptor = SNARE)を探索するにあたり、NSFとSNAP複合体に結合するタンパク質を脳由来の膜画分を用いて行なった結果、既にシナプスで同定されていたSynaptobrevinとSyntaxin, SNAP-25が同定された<ref name=ref21><pubmed>8455717</pubmed></ref>。Synaptobrevinがシナプス小胞膜、SyntaxinとSNAP-25が形質膜にあることから、Rothmanはそれぞれv-SNARE(vesicular SNARE)とt-SNARE(target-SNARE)と名付け、シナプス小胞の形質膜の融合にはv-SNAREとt-SNAREがNSFやSNAPと巨大なタンパク質複合体を形成する必要があると提唱した。この「SNARE仮説」とその後の実証研究の功績によりRothmanは2013年ノーベル医学生理学賞を受賞した。現在では、NSFやSNAPは膜融合ではなく、膜融合後のSNAREタンパク質複合体を乖離させる働きをしていることが分かったが<ref name=ref22><pubmed>10769209</pubmed></ref> <ref name=ref23><pubmed>9177194</pubmed></ref>、SNAREタンパク質が膜融合を促進させるタンパク質であることは、リポソーム再構成実験によって示された<ref name=ref24><pubmed>9529252</pubmed></ref>。また、神経毒として知られる各種[[ボツリヌス毒素]]や[[テタヌス毒素]]が神経伝達物質の放出を阻害する作用は、それらがSNAREタンパク質を特異的に切断することによる<ref name=ref25><pubmed>9759724</pubmed></ref>


(3)膜融合:シナプス小胞の形質膜への融合過程においては、3つのSNAREタンパク質が重要な役割を果たしている。James Rothmanらは、[[ゴルジ]]装置における物質輸送に必要な可溶性タンパク質としてNSFとSNAPという二種類のタンパク質を同定した。更にRothmanは、これら可溶性タンパク質の膜受容体(SNAP receptor = SNARE)を探索するにあたり、NSFとSNAP複合体に結合するタンパク質を脳由来の膜画分を用いて行なった結果、既にシナプスで同定されていたSynaptobrevinとSyntaxin, SNAP-25が同定された<ref name=ref21><pubmed>8455717</pubmed></ref>。Synaptobrevinがシナプス小胞膜、SyntaxinとSNAP-25が形質膜にあることから、Rothmanはそれぞれv-SNARE(vesicular SNARE)とt-SNARE(target-SNARE)と名付け、シナプス小胞の形質膜の融合にはv-SNAREとt-SNAREがNSFやSNAPと巨大なタンパク質複合体を形成する必要があると提唱した。この「SNARE仮説」とその後の実証研究の功績によりRothmanは2013年ノーベル医学生理学賞を受賞した。現在では、NSFやSNAPは膜融合ではなく、膜融合後のSNAREタンパク質複合体を乖離させる働きをしていることが分かったが<ref name=ref22><pubmed>10769209</pubmed></ref> <ref name=ref23><pubmed>9177194</pubmed></ref>、SNAREタンパク質が膜融合を促進させるタンパク質であることは、リポソーム再構成実験によって示された<ref name=ref24><pubmed>9529252</pubmed></ref>。また、神経毒として知られる各種[[ボツリヌス毒素]]や[[テタヌス毒素]]が神経伝達物質の放出を阻害する作用は、それらがSNAREタンパク質を特異的に切断することによる<ref name=ref25><pubmed>9759724</pubmed></ref>。
 シナプス小胞のエキソサイトーシスの特徴は、Ca<sup>2+</sup>によって迅速に制御される点が挙げられる。シナプス小胞に豊富に存在するタンパク質であるSynaptotagminは、PKCのCa<sup>2+</sup>結合部位と相同性を持つC2ドメインを有するCa<sup>2+</sup>結合タンパク質であると同時にリン脂質やSNAREタンパク質への結合能を有する膜タンパク質であり、シナプス小胞膜上のCa<sup>2+</sup>センサーの候補である<ref name=ref26><pubmed>    1589771</pubmed></ref>。Thomas Sudhofらは、Synaptotagmin 1ノックアウトマウス由来の神経培養細胞を解析した結果、活動電位に同期して起こる迅速なシナプス伝達が消失していることを見いだした。しかしながら、活動電位に同期しない遅いシナプス応答は依然として見られることから、Synaptotagminが速いシナプス小胞のエキソサイトーシスにおけるCa<sup>2+</sup>センサーであると考えられている<ref name=ref27><pubmed>7954835</pubmed></ref>。実際、Ca<sup>2+</sup>に対する親和性が低下するSynaptotagmin変異体のノックインマウスの[[海馬]]培養細胞では、小胞の放出確率が優位に有為に低下することが示されている<ref name=ref28><pubmed>11242035</pubmed></ref>。遅いエキソサイトーシスを担うCa<sup>2+</sup>センサーとして、他のSynaptotagminイソ型の関与が提唱されている<ref name=ref29><pubmed>24267651</pubmed></ref>。また、自発的エキソサイトーシスや遅いエキソサイトーシスに関わるCa<sup>2+</sup>センサーとしてCa<sup>2+</sup>親和性の高い可溶性Ca<sup>2+</sup>結合タンパク質であるDoc2の関与も示唆されている<ref name=ref30><pubmed>22036572</pubmed></ref> <ref name=ref31><pubmed>20150444</pubmed></ref>。


 シナプス小胞のエキソサイトーシスの特徴は、Ca2+によって迅速に制御される点が挙げられる。シナプス小胞に豊富に存在するタンパク質であるSynaptotagminは、PKCのCa2+結合部位と相同性を持つC2ドメインを有するCa2+結合タンパク質であると同時にリン脂質やSNAREタンパク質への結合能を有する膜タンパク質であり、シナプス小胞膜上のCa2+センサーの候補である<ref name=ref26><pubmed>   1589771</pubmed></ref>。Thomas Sudhofらは、Synaptotagmin 1ノックアウトマウス由来の神経培養細胞を解析した結果、活動電位に同期して起こる迅速なシナプス伝達が消失していることを見いだした。しかしながら、活動電位に同期しない遅いシナプス応答は依然として見られることから、Synaptotagminが速いシナプス小胞のエキソサイトーシスにおけるCa2+センサーであると考えられている<ref name=ref27><pubmed>7954835</pubmed></ref>。実際、Ca2+に対する親和性が低下するSynaptotagmin変異体のノックインマウスの[[海馬]]培養細胞では、小胞の放出確率が優位に有為に低下することが示されている<ref name=ref28><pubmed>11242035</pubmed></ref>。遅いエキソサイトーシスを担うCa2+センサーとして、他のSynaptotagminイソ型の関与が提唱されている<ref name=ref29><pubmed>24267651</pubmed></ref>。また、自発的エキソサイトーシスや遅いエキソサイトーシスに関わるCa2+センサーとしてCa2+親和性の高い可溶性Ca2+結合タンパク質であるDoc2の関与も示唆されている<ref name=ref30><pubmed>22036572</pubmed></ref> <ref name=ref31><pubmed>20150444</pubmed></ref>。
 Ca<sup>2+</sup>濃度の上昇後、極めて迅速にエキソサイトーシスが起こることを考えると、プライミングされたシナプス小胞において形成されたSNARE複合体が、Ca<sup>2+</sup>濃度の上昇が起こらない時には膜融合を引き起こさないように抑制している因子の存在が考えられる。この役割を果たしていると考えられているのがComplexinという小さな可溶性タンパク質である。ComplexinはSNAREタンパク質単独には結合せずSNARE複合体に高い親和性を有するタンパク質として知られている<ref name=ref32><pubmed>7553862</pubmed></ref>。現在のモデルでは、ComplexinがSNARE複合体に結合することで、v-SNAREとt-SNAREの複合体形成が不完全な状態で保たれており(clamped)、Ca<sup>2+</sup>濃度の上昇に伴いComplexinが複合体から解離し、そこにCa<sup>2+</sup>センサーであるSynaptotagminが複合体に入ることによりエキソサイトーシスが達成すると考えられている<ref name=ref33><pubmed>19164751</pubmed></ref> <ref name=ref34><pubmed>19164750</pubmed></ref>。
 
 Ca2+濃度の上昇後、極めて迅速にエキソサイトーシスが起こることを考えると、プライミングされたシナプス小胞において形成されたSNARE複合体が、Ca2+濃度の上昇が起こらない時には膜融合を引き起こさないように抑制している因子の存在が考えられる。この役割を果たしていると考えられているのがComplexinという小さな可溶性タンパク質である。ComplexinはSNAREタンパク質単独には結合せずSNARE複合体に高い親和性を有するタンパク質として知られている<ref name=ref32><pubmed>7553862</pubmed></ref>。現在のモデルでは、ComplexinがSNARE複合体に結合することで、v-SNAREとt-SNAREの複合体形成が不完全な状態で保たれており(clamped)、Ca2+濃度の上昇に伴いComplexinが複合体から解離し、そこにCa2+センサーであるSynaptotagminが複合体に入ることによりエキソサイトーシスが達成すると考えられている<ref name=ref33><pubmed>19164751</pubmed></ref> <ref name=ref34><pubmed>19164750</pubmed></ref>。


===エンドサイトーシスの分子機構===
===エンドサイトーシスの分子機構===
97行目: 97行目:
 中枢神経系シナプスの一部にはシナプス小胞よりも大きく(直径100~300ナノメートル)、電子顕微鏡で内腔が黒く見える大型[[有芯顆粒]](Large Dense Core Vesicle: LDCV)が含まれるものがある(図5)。シナプス小胞はシナプス前部の形質膜形質膜近傍からクラスター状に多数存在するのに対して、LDCVはシナプス部位から離れた部位に散在している。シナプス小胞には速い神経伝達を担うグルタミン酸、GABA、グリシン、アセチルコリンが含まれているのに対して、LDCVには[[ドーパミン]]などのモノアミン類や[[神経ペプチド]]、多種多様な神経栄養因子を神経伝達物質として含まれている。また、交感神経のシナプスにおいては、[[ノルエピネフリン]]や[[セロトニン]]を含む60〜80 nmの[[有芯小胞]]が見られ、これをLDCVと区別してSDCV (small dense core vesicle) と呼ぶ場合もある。シナプス小胞とLDCVは中に含まれる神経伝達物質の違いに加え、様々な性質が異なる。シナプス小胞から放出される神経伝達物質神経伝達物質は、主にシナプス後部側の[[イオンチャネル]]型受容体に作用するため、シナプス後部側に電気的なシナプス応答を引き起こす。一方、LDCVに含まれる伝達物質はシナプス後部側のGタンパク共役型受容体や神経栄養因子受容体に作用し、セカンドメッセンジャーを介したシナプス伝達の修飾を行う。  
 中枢神経系シナプスの一部にはシナプス小胞よりも大きく(直径100~300ナノメートル)、電子顕微鏡で内腔が黒く見える大型[[有芯顆粒]](Large Dense Core Vesicle: LDCV)が含まれるものがある(図5)。シナプス小胞はシナプス前部の形質膜形質膜近傍からクラスター状に多数存在するのに対して、LDCVはシナプス部位から離れた部位に散在している。シナプス小胞には速い神経伝達を担うグルタミン酸、GABA、グリシン、アセチルコリンが含まれているのに対して、LDCVには[[ドーパミン]]などのモノアミン類や[[神経ペプチド]]、多種多様な神経栄養因子を神経伝達物質として含まれている。また、交感神経のシナプスにおいては、[[ノルエピネフリン]]や[[セロトニン]]を含む60〜80 nmの[[有芯小胞]]が見られ、これをLDCVと区別してSDCV (small dense core vesicle) と呼ぶ場合もある。シナプス小胞とLDCVは中に含まれる神経伝達物質の違いに加え、様々な性質が異なる。シナプス小胞から放出される神経伝達物質神経伝達物質は、主にシナプス後部側の[[イオンチャネル]]型受容体に作用するため、シナプス後部側に電気的なシナプス応答を引き起こす。一方、LDCVに含まれる伝達物質はシナプス後部側のGタンパク共役型受容体や神経栄養因子受容体に作用し、セカンドメッセンジャーを介したシナプス伝達の修飾を行う。  


 中枢神経系でのLDCVからの伝達物質放出機構は明らかではないが、クロム親和性細胞を用いた研究から、シナプス小胞同様、SNARE複合体による膜融合で伝達物質放出を行っていると考えられている。しかし、シナプス小胞とLDCVでは[[カルシウム]]に対する応答性に違いがあることが知られている。伝達物質放出のためにシナプス小胞がシナプス前部局所での高濃度のCa2+濃度上昇を必要とするのに対し、LDCVは持続的な低濃度のCa2+濃度上昇を必要とする<ref name=ref48><pubmed>15572159</pubmed></ref>。SNARE複合体に含まれるSynaptobrevinやCa2+センサーであるSynaptotagminなどにはアイソフォームがあり、シナプス小胞とLDCVに存在するこれらのアイソフォームが異なる可能性が示唆されている<ref name=ref49><pubmed>21551071</pubmed></ref> <ref name=ref50 />。またCa2+感受性タンパク質であるCAPSはLDCVにのみ存在する。シナプス小胞とLDCVはこれらのタンパク質の違いによってCa2+イオンの感受性やエキソサイトーシス・エンドサイトーシスの速度に相違が生まれるのかもしれないが、今後の研究による更なる解明が期待される。
 中枢神経系でのLDCVからの伝達物質放出機構は明らかではないが、クロム親和性細胞を用いた研究から、シナプス小胞同様、SNARE複合体による膜融合で伝達物質放出を行っていると考えられている。しかし、シナプス小胞とLDCVでは[[カルシウム]]に対する応答性に違いがあることが知られている。伝達物質放出のためにシナプス小胞がシナプス前部局所での高濃度のCa<sup>2+</sup>濃度上昇を必要とするのに対し、LDCVは持続的な低濃度のCa<sup>2+</sup>濃度上昇を必要とする<ref name=ref48><pubmed>15572159</pubmed></ref>。SNARE複合体に含まれるSynaptobrevinやCa<sup>2+</sup>センサーであるSynaptotagminなどにはアイソフォームがあり、シナプス小胞とLDCVに存在するこれらのアイソフォームが異なる可能性が示唆されている<ref name=ref49><pubmed>21551071</pubmed></ref> <ref name=ref50 />。またCa<sup>2+</sup>感受性タンパク質であるCAPSはLDCVにのみ存在する。シナプス小胞とLDCVはこれらのタンパク質の違いによってCa<sup>2+</sup>イオンの感受性やエキソサイトーシス・エンドサイトーシスの速度に相違が生まれるのかもしれないが、今後の研究による更なる解明が期待される。
   
   
 このようなシナプス活性帯からの距離的な差異や、活性化させる受容体の違い、また[[シナプス前膜]]と膜融合を起こすのに必要なカルシウムの応答性の相違などによって、LDCV内の伝達物質はシナプス小胞内の神経伝達物質よりも遅い速度でシナプス後部側に作用する。更に、シナプス小胞は伝達物質の放出後、エンドサイトーシスによって再合成され、シナプス前部局所で伝達物質の再充填が行われるのに対し、LDCVは一度きりの放出で、新たなLDCVはトランスゴルジネットワークから生成される、というように生成過程においても違いがある。シナプス前部にシナプス小胞とLDCVの両方が存在するシナプスが脳の各部位で見つかっている。そのようなシナプスではひとつの[[シナプス前終末]]に神経伝達物質を2種類以上有することになるが、この伝達物質の組み合わせは脳の部位によって異なり、 これがそれぞれのシナプスにおけるシナプス伝達の多様性に寄与していると考えられる<ref name=ref51><pubmed>    16847638</pubmed></ref>。
 このようなシナプス活性帯からの距離的な差異や、活性化させる受容体の違い、また[[シナプス前膜]]と膜融合を起こすのに必要なカルシウムの応答性の相違などによって、LDCV内の伝達物質はシナプス小胞内の神経伝達物質よりも遅い速度でシナプス後部側に作用する。更に、シナプス小胞は伝達物質の放出後、エンドサイトーシスによって再合成され、シナプス前部局所で伝達物質の再充填が行われるのに対し、LDCVは一度きりの放出で、新たなLDCVはトランスゴルジネットワークから生成される、というように生成過程においても違いがある。シナプス前部にシナプス小胞とLDCVの両方が存在するシナプスが脳の各部位で見つかっている。そのようなシナプスではひとつの[[シナプス前終末]]に神経伝達物質を2種類以上有することになるが、この伝達物質の組み合わせは脳の部位によって異なり、 これがそれぞれのシナプスにおけるシナプス伝達の多様性に寄与していると考えられる<ref name=ref51><pubmed>    16847638</pubmed></ref>。