「シナプス」の版間の差分

1,277 バイト追加 、 2013年11月21日 (木)
編集の要約なし
編集の要約なし
編集の要約なし
6行目: 6行目:
</div>
</div>


英語名:Synapse 独:Synapsen 仏:Synapse
英語名:synapse 独:Synapse 仏:synapse


{{box|text=
{{box|text= シナプスとは、神経情報を出力する側と入力される側の間に発達した、情報伝達のための接触構造である。最も基本的な構造はシナプス前細胞の軸索末端がシナプス後細胞の[[樹状突起]]に接触しているものである。シナプスには大別して[[化学シナプス]] chemical synapseと[[電気シナプス]] electrical synapseがあり、出力する側の細胞を[[シナプス前細胞]]、入力される側の細胞を[[シナプス後細胞]]という。中枢神経系の多くのシナプスを占める化学シナプスでは、活動電位の到来により、シナプス前部の電位依存性カルシウムチャネルが開口し、その結果カルシウムが流入し、シナプス顆粒の開口放出を引き起こす。その結果シナプス顆粒に含まれている神経伝達物質がシナプス間隙に放出される。神経伝達物質は、シナプス後部にある神経伝達物質受容体に結合し、直接膜電位を変化させるか細胞内二次メッセンジャーを活性化する事で伝達を行う。化学シナプスは興奮性シナプスと抑制性シナプスに細分される。一方、電気シナプスは接触膜上のギャップ結合を介して、膜電位変化を直接的に次の神経細胞に伝える構造である。このように受け取られたシナプス電位が細胞体まで伝わり、軸索小丘で統合され、最終的にシナプス後細胞が発火するかどうかが決まる。この影響の相互作用を神経統合と呼ぶ。またシナプス伝達の効率は必ずしも一定ではなく、入力の強度により変化する。これをシナプス可塑性と呼び、学習記憶の細胞メカニズムであると考えられている。}}
 シナプスとは、神経情報を出力する側と入力される側の間に発達した、情報伝達のための接触構造のことである<ref name=ref1>'''甘利俊一監修・古市貞一編'''<br>「シリーズ脳科学5―分子・細胞・シナプスからみる脳」<br>''東京大学出版会''、2008</ref>。シナプスを介した情報伝達を[[シナプス伝達]] synaptic transmissionと呼び、神経細胞と[[wikipedia:ja:筋|筋]]線維([[神経筋接合部]]; [[NMJ]])、神経細胞と他種細胞の間に形成される構造も含めてシナプスと呼ぶこともある<ref name=ref2>'''Purves and Lichtman'''<br>"Principles of Neural Development" <br>''Sinauer Associates Inc'', 1985</ref>。
[[image:Complete_neuron_cell_diagram_en.png|thumb|350px|'''図1.ニューロン(神経細胞)の構造図'''<br>Dendrites=樹状突起、Rough ER (Nissl body)=粗面小胞体(ニッスル小体)、Polyribosomes=ポリリボソーム、Ribosomes=リボソーム、Golgi apparatus=ゴルジ体、Nucleus=細胞核、Nucleolus=核小体、Membrane=膜、Microtubule=微小管、Mitochondrion=ミトコンドリア、Smooth [[ER]]=滑面小胞体、Synapse (Axodendritic)=軸索樹状突起間シナプス、Synapse=シナプス、Microtubule Neurofibrils=[[微小管]]ニューロフィラメント、Neurotransmitter=神経伝達物質、Receptor=受容体、Synaptic vesicles=シナプス小胞、Synaptic cleft=シナプス間隙、Axon terminal=軸索末端、Node of Ranvier =[[ランヴィエの絞輪]] 、Myelin Sheath (Schwann cell)= シュワン細胞のミエリン鞘、Axon hillock=軸索小丘、 Nucleus (Schwann cell)=シュワン細胞の細胞核、Microfilament=[[マイクロフィラメント]]、Axon=軸索。Wikipediaより引用。]]
シナプスには大別して[[化学シナプス]] chemical synapseと[[電気シナプス]] electrical synapseがあり、出力する側の細胞を[[シナプス前細胞]]、入力される側の細胞を[[シナプス後細胞]]という。
 
 シナプスの最も基本的な構造はシナプス前細胞の軸索末端がシナプス後細胞の[[樹状突起]]に接触しているもので、図1に示された部分である。
}}
 
[[image:Complete_neuron_cell_diagram_en.png|thumb|350px|'''図1.ニューロン(神経細胞)の構造図'''<br>Dendrites=樹状突起、Rough ER (Nissl body)=粗面小胞体(ニッスル小体)、Polyribosomes=ポリリボソーム、Ribosomes=リボソーム、Golgi apparatus=ゴルジ体、Nucleus=細胞核、Nucleolus=核小体、Membrane=膜、Microtubule=微小管、Mitochondrion=ミトコンドリア、Smooth [[ER]]=滑面小胞体、Synapse (Axodendritic)=軸索樹状突起間シナプス、Synapse=シナプス、Microtubule Neurofibrils=[[微小管]]ニューロフィラメント、Neurotransmitter=神経伝達物質、Receptor=受容体、Synaptic vesicles=シナプス小胞、Synaptic cleft=シナプス間隙、Axon terminal=軸索末端、Node of Ranvier =[[ランヴィエの絞輪]] 、Myelin Sheath (Schwann cell)= シュワン細胞のミエリン鞘、Axon hillock=軸索小丘、 Nucleus (Schwann cell)=シュワン細胞の細胞核、Microfilament=[[マイクロフィラメント]]、Axon=軸索]]


== 歴史 ==
== 歴史 ==


 [[wikipedia:Cajal|Cajal]]が1888年に[[小脳]]で神経細胞同士が接触していることを明らかにしているが、明確に区分された構造物としてシナプスが観察されたのは1897年がはじめてである。
 [[wj:サンティアゴ・ラモン・イ・カハール|Cajal]]が1888年に[[小脳]]で神経細胞同士が接触していることを明らかにしているが、明確に区分された構造物としてシナプスが観察されたのは1897年がはじめてである。


 「シナプス」の名付け親は[[wikipedia:Sherrington|Sherrington]]であり、1897年に神経細胞が別の神経細胞につながる特徴的な構造を指して、synapsis(ギリシャ語で、”to clasp”:「留め具」や「握手」といった意味)と呼んだ。synapsisという言葉は多少改変され、1904年にはSherrington自身もsynapseと呼んでいる<ref name=ref2 />。
 「シナプス」の名付け親は[[wj:チャールズ・シェリントン|Sherrington]]であり、1897年に神経細胞が別の神経細胞につながる特徴的な構造を指して、synapsis(ギリシャ語で、”to clasp”:「留め具」や「握手」といった意味)と呼んだ。synapsisという言葉は多少改変され、1904年にはSherrington自身もsynapseと呼んでいる<ref name=ref2>'''Purves and Lichtman'''<br>"Principles of Neural Development" <br>''Sinauer Associates Inc'', 1985</ref>。


 神経細胞同士がシナプスで相互作用していることが[[光学顕微鏡]]により明らかになっても、形態的・機能的に神経細胞はつながっているのか否かの論争は50年以上にわたり続いた。Cajalのニューロン説(形態的には非連続で接触contiguityしている)と[[wikipedia:Golgi|Golgi]]の網状説(形態的に連続continuityしている)は、1950年代に[[wikipedia:ja:電子顕微鏡|電子顕微鏡]]によりシナプス間隙があることが観察され、ニューロン説が正しいことが示された。情報伝達が化学的であるのか電気的であるのかはいわゆる「泡か電撃か」”soup versus spark” 論争である。1950年代後半になって多くのシナプスは化学シナプスである(電子顕微鏡でシナプス小胞が観察された)が、一部は明らかに電気シナプスであり、稀には化学的にも電気的にも情報伝達を行うシナプスがあることがわかった<ref name=ref3>'''Cowan, Sudhof and Stevens'''<br>"Synapses"<br>''The Johns Hopkins University Press'', 2001</ref> <ref name=ref4>'''Kuno'''<br>"The Synapse: Function, Plasticity, and Neurotrophism"<br>''Oxford University Press'', 1995</ref>。
 神経細胞同士がシナプスで相互作用していることが[[光学顕微鏡]]により明らかになっても、形態的・機能的に神経細胞はつながっているのか否かの論争は50年以上にわたり続いた。Cajalのニューロン説(形態的には非連続で接触contiguityしている)と[[wj:カミッロ・ゴルジ|Golgi]]の網状説(形態的に連続continuityしている)は、1950年代に[[wikipedia:ja:電子顕微鏡|電子顕微鏡]]によりシナプス間隙があることが観察され、ニューロン説が正しいことが示された。情報伝達が化学的であるのか電気的であるのかはいわゆる「泡か電撃か」”soup versus spark” 論争である。1950年代後半になって多くのシナプスは化学シナプスである(電子顕微鏡でシナプス小胞が観察された)が、一部は明らかに電気シナプスであり、稀には化学的にも電気的にも情報伝達を行うシナプスがあることがわかった<ref name=ref3>'''Cowan, Sudhof and Stevens'''<br>"Synapses"<br>''The Johns Hopkins University Press'', 2001</ref> <ref name=ref4>'''Kuno'''<br>"The Synapse: Function, Plasticity, and Neurotrophism"<br>''Oxford University Press'', 1995</ref>。


 その後、[[wikipedia:Loewi|Loewi]]による水溶性情報伝達物質(後に[[アセチルコリン]]と同定)の発見をはじめ、化学シナプスにおける情報伝達に関わる様々な分子が巧妙な実験により明らかになり、[[wikipedia:Katz|Katz]]らのシナプス小胞仮説vesicle hypothesis(情報伝達が量子的単位を持っているという仮説)につながっていく。同時期には[[標本固定法]]と顕微鏡法が発達し、形態と機能の両面から研究が発展する足がかりとなった<ref name=ref3 /> <ref name=ref4 />。
 その後、[[wj:オットー・レーヴィ|Loewi]]による水溶性情報伝達物質(後に[[アセチルコリン]]と同定)の発見をはじめ、化学シナプスにおける情報伝達に関わる様々な分子が巧妙な実験により明らかになり、[[wikipedia:Katz|Katz]]らのシナプス小胞仮説vesicle hypothesis(情報伝達が量子的単位を持っているという仮説)につながっていく。同時期には[[標本固定法]]と顕微鏡法が発達し、形態と機能の両面から研究が発展する足がかりとなった<ref name=ref3 /> <ref name=ref4 />。


 1970年代、80年代前半には、アセチル[[コリン]]以外の神経伝達物質や、[[カルシウム]]イオンの下流の機構が次々と明らかになった。クローニングの技術と相まって、遺伝学的な探索ができるようになり、臨床分野の[[wikipedia:ja:神経内科|神経内科]]や[[wikipedia:ja:精神科|精神科]]との関わりがはじまったのもこの頃である。
 1970年代、80年代前半には、[[アセチルコリン]]以外の神経伝達物質や、[[カルシウム]]イオンの下流の機構が次々と明らかになった。[[クローニング]]の技術と相まって、遺伝学的な探索ができるようになり、臨床分野の[[wikipedia:ja:神経内科|神経内科]]や[[wikipedia:ja:精神科|精神科]]との関わりがはじまったのもこの頃である。


 1973年には[[wikipedia:Bliss|Bliss]] & [[wikipedia:Lømo|Lømo]]により[[海馬]]における[[長期増強]] Long-Term Potentiation (LTP)が報告され、1982年には[[伊藤正男]]らにより小脳における[[長期抑圧]] Long-Term Depressionが報告された。
 1973年には[[w:Timothy Bliss|Bliss]] & [[w:Terje Lømo|Lømo]]により[[海馬]]における[[長期増強]] Long-Term Potentiation (LTP)が報告され、1982年には[[wj:伊藤正男|伊藤正男]]らにより小脳における[[長期抑圧]] Long-Term Depressionが報告された。


 1980年代頃からは[[wikipedia:ja:分子生物学|分子生物学]]を用いて、[[シナプス形成]] synaptogenesisやシナプス可塑性 synaptic plasticityが重要な研究テーマとして認識されるようになった<ref name=ref3 /> <ref name=ref4 />。
 1980年代頃からは[[wikipedia:ja:分子生物学|分子生物学]]を用いて、[[シナプス形成]] synaptogenesisやシナプス可塑性 synaptic plasticityが重要な研究テーマとして認識されるようになった<ref name=ref1>'''甘利俊一監修・古市貞一編'''<br>「シリーズ脳科学5―分子・細胞・シナプスからみる脳」<br>''東京大学出版会''、2008</ref><ref name=ref3 /> <ref name=ref4 />。


 1990年代には、[[wikipedia:Kandel|Kandel]]らにより、[[wikipedia:ja:アメフラシ|アメフラシ]]を用いて行動の「慣れ」と「感作」に関連するシナプスの研究が進み、動物の学習行動の基盤にシナプス伝達効率の変化が存在し、その実体が[[wikipedia:ja:カリウムチャネル|カリウムチャネル]]の活性化と抑制であることが示された。なお、他に有名なモデルシナプスとしては、[[wikipedia:ja:イカ|イカ]]のGiant synapseや、[[聴覚中枢]]の[[Calyx of Held]]などがある<ref name=ref3 /> <ref>'''Kandel, Schwartz and Jessell'''<br>"Principles of Neural Science 4th ed." <br>''McGraw-Hill Medical'', 2000</ref>。
 1990年代には、[[wikipedia:Kandel|Kandel]]らにより、[[wikipedia:ja:アメフラシ|アメフラシ]]を用いて行動の「慣れ」と「感作」に関連するシナプスの研究が進み、動物の学習行動の基盤にシナプス伝達効率の変化が存在し、その実体が[[wikipedia:ja:カリウムチャネル|カリウムチャネル]]の活性化と抑制であることが示された。なお、他に有名なモデルシナプスとしては、[[wikipedia:ja:イカ|イカ]]のGiant synapseや、[[聴覚中枢]]の[[Calyx of Held]]などがある<ref name=ref3 /> <ref>'''Kandel, Schwartz and Jessell'''<br>"Principles of Neural Science 4th ed." <br>''McGraw-Hill Medical'', 2000</ref>。
40行目: 34行目:


シナプスが広い意味で使われている場合がある。
シナプスが広い意味で使われている場合がある。
#例えば神経筋接合部(NMJ; neuromuscular junction)や、[[wikipedia:ja:腺|腺]]に分布する[[神経終末]]をシナプスと呼ぶか
#例えば[[神経筋接合部]](NMJ; neuromuscular junction)や、[[wikipedia:ja:腺|腺]]に分布する[[神経終末]]をシナプスと呼ぶか
#2つの神経終末がお互いにシナプス前・シナプス後の特性を持っているものをシナプスと呼ぶか
#2つの神経終末がお互いに[[シナプス前]]・シナプス後の特性を持っているものをシナプスと呼ぶか
#樹状突起―樹状突起、軸索―軸索同士の接触をシナプスと呼ぶか
#樹状突起―樹状突起、軸索―軸索同士の接触をシナプスと呼ぶか
など、「シナプス」の使用方法には一部コンセンサスがない部分もあり、注意が必要である<ref name=ref2 />。
など、「シナプス」の使用方法には一部コンセンサスがない部分もあり、注意が必要である<ref name=ref2 />。
49行目: 43行目:
== 化学シナプス ==
== 化学シナプス ==


 電気信号として情報伝達されたシナプス前細胞が、[[シナプス前終末]]で化学的な情報伝達物質としてその情報を出力し、シナプス後細胞が化学的情報を受容体で受け取る仕組みを化学シナプスという<ref name=ref1 />。
 電気信号として情報伝達されたシナプス前細胞が、[[シナプス前終末]]で化学的な情報伝達物質としてその情報を出力し、シナプス後細胞が化学的情報を受容体で受け取る仕組みを化学シナプスという<ref name=ref1>'''甘利俊一監修・古市貞一編'''<br>「シリーズ脳科学5―分子・細胞・シナプスからみる脳」<br>''東京大学出版会''、2008</ref>。


===構造===
===構造===
[[image:Palay cerebellar synapse.jpg|thumb|350px|'''図2.小脳におけるシナプスの電子顕微鏡像'''<ref>'''Peters, Palay and Webster'''<br>"Fine Structure of the Nervous System: Neurons and Their Supporting Cells"<br>''Oxford University Press'', 1991</ref><br>電子密度が濃く、黒く見える部分がシナプス。軸索終末にはシナプス小胞が多数観察される。また、グリアがシナプスを包囲し、三者間シナプスを形成している。<br>
[[image:Palay cerebellar synapse.jpg|thumb|350px|'''図2.小脳におけるシナプスの電子顕微鏡像'''<ref>'''Peters, Palay and Webster'''<br>"Fine Structure of the Nervous System: Neurons and Their Supporting Cells"<br>''Oxford University Press'', 1991</ref><br>電子密度が濃く、黒く見える部分がシナプス。軸索終末にはシナプス小胞が多数観察される。また、グリアがシナプスを包囲し、三者間シナプスを形成している。<br>
As:[[バーグマングリア]]、At:軸索終末、Ax:軸索、sp:スパイン、SR:[[滑面小胞体]]]]
As:[[バーグマングリア]]、At:[[軸索終末]]、Ax:軸索、sp:スパイン、SR:[[滑面小胞体]]]]


 図2に示したとおり、化学シナプスは、基本的に2つの[[細胞膜]]([[シナプス前膜]]・[[シナプス後膜]])からなり、向かい合った細胞膜同士の隙間を[[シナプス間隙]] synaptic cleftと呼ぶ。
 図2に示したとおり、化学シナプスは、基本的に2つの[[細胞膜]]([[シナプス前膜]]・[[シナプス後膜]])からなり、向かい合った細胞膜同士の隙間を[[シナプス間隙]] synaptic cleftと呼ぶ。
61行目: 55行目:
 多くの場合、[[シナプス前要素]] presynaptic elementsは軸索終末であり、その構造から終末ボタン presynaptic boutonと呼ばれる。シナプス間隙に面する[[軸索膜]](シナプス前膜)には、電子密度が高い裏打ち構造を持つ部位があり、[[アクティブゾーン]](活性部位; active zone)という。アクティブゾーンは後述するように、[[開口放出]]の場と考えられている。
 多くの場合、[[シナプス前要素]] presynaptic elementsは軸索終末であり、その構造から終末ボタン presynaptic boutonと呼ばれる。シナプス間隙に面する[[軸索膜]](シナプス前膜)には、電子密度が高い裏打ち構造を持つ部位があり、[[アクティブゾーン]](活性部位; active zone)という。アクティブゾーンは後述するように、[[開口放出]]の場と考えられている。


 一方、多くの場合、シナプス後要素 postsynaptic elementは[[細胞体]]や樹状突起dendriteである。シナプス間隙を挟んだアクティブゾーンの対向面には膜の電子密度が高い裏打ち構造([[シナプス後肥厚部]]:postsynaptic density (PSD))が厚く発達している<ref name=ref1 /> <ref name=ref5>'''Shepherd'''<br>"The Synaptic Organization of the Brain 5th ed."<br>''Oxford University Press'', 2004</ref>。
 一方、多くの場合、シナプス後要素 postsynaptic elementは[[細胞体]]や樹状突起dendriteである。シナプス間隙を挟んだアクティブゾーンの対向面には膜の電子密度が高い裏打ち構造([[シナプス後肥厚部]]:[[postsynaptic density]] ([[PSD]]))が厚く発達している<ref name=ref1 /> <ref name=ref5>'''Shepherd'''<br>"The Synaptic Organization of the Brain 5th ed."<br>''Oxford University Press'', 2004</ref>。


 シナプス前膜の厚さにくらべシナプス後肥厚部が極端に厚いものを[[非対称性シナプス]] asymmetrical synapse(Gray 1型)と呼び、[[興奮性シナプス]] excitatory synapseの特徴とされている。シナプス間隙は約30 nmと広く、シナプス前終末のシナプス小胞の形状は小型球形である。なお、興奮性シナプスが樹状突起に投射する場合、[[樹状突起棘]] dendritic spineという特徴的な構造をとることがある。
 シナプス前膜の厚さにくらべ[[シナプス後肥厚]]部が極端に厚いものを[[非対称性シナプス]] asymmetrical synapse(Gray 1型)と呼び、[[興奮性シナプス]] excitatory synapseの特徴とされている。シナプス間隙は約30 nmと広く、シナプス前終末のシナプス小胞の形状は小型球形である。なお、[[興奮性]]シナプスが樹状突起に投射する場合、[[樹状突起棘]] dendritic spineという特徴的な構造をとることがある。


 一方、シナプス前膜の厚さとシナプス後肥厚部の厚さがあまり変わらないものを[[対称性シナプス]] symmetrical synapse(Gray 2型)と呼び、[[抑制性シナプス]] inhibitory synapseの特徴とされている。シナプス間隙は約20 nm弱であり、興奮性シナプスのシナプス間隙に比べて狭い<ref name=ref1 /> <ref name=ref5 />。
 一方、シナプス前膜の厚さとシナプス後肥厚部の厚さがあまり変わらないものを[[対称性シナプス]] symmetrical synapse(Gray 2型)と呼び、[[抑制性シナプス]] inhibitory synapseの特徴とされている。シナプス間隙は約20 nm弱であり、興奮性シナプスのシナプス間隙に比べて狭い<ref name=ref1 /> <ref name=ref5 />。
74行目: 68行目:
(1) シナプス前細胞の軸索で[[活動電位]](膜の[[脱分極]])が伝わり、シナプス前終末まで到達する。<br>
(1) シナプス前細胞の軸索で[[活動電位]](膜の[[脱分極]])が伝わり、シナプス前終末まで到達する。<br>
(2) [[カルシウム]]イオンがシナプス前終末に流入する。<br>
(2) [[カルシウム]]イオンがシナプス前終末に流入する。<br>
(3) カルシウムイオンの下流で一連のシグナル伝達が引き起こされる。<br>
(3) [[カルシウムイオン]]の下流で一連のシグナル伝達が引き起こされる。<br>
(4,5) シナプス小胞 synaptic vesicleが細胞膜と結合する。<br>
(4,5) シナプス小胞 synaptic vesicleが細胞膜と結合する。<br>
(6) [[神経伝達物質]] neurotransmitterのパケットpacket (quantum)が開口放出される。<br>
(6) [[神経伝達物質]] neurotransmitterのパケットpacket (quantum)が開口放出される。<br>
95行目: 89行目:


====抑制性シナプス====
====抑制性シナプス====
 シナプス前細胞の発火がシナプス後細胞の発火を抑制(過分極)する。その機構として、抑制性シナプス電位(IPSP)・興奮性シナプス電流(IPSC)があり、情報伝達物質としてはGABAやグリシンが有名である<ref name=ref3 />。
 シナプス前細胞の発火がシナプス後細胞の発火を抑制(過分極)する。その機構として、抑制性シナプス電位(IPSP)・興奮性シナプス電流(IPSC)があり、情報伝達物質としては[[GABA]]や[[グリシン]]が有名である<ref name=ref3 />。


 興奮性シナプスによるEPSPを減少させる働きを指して[[シナプス前抑制性]]、と呼ぶことがあるため、抑制性シナプスを特に「[[シナプス後抑制性]]」と区別して呼ぶこともある。
 興奮性シナプスによるEPSPを減少させる働きを指して[[シナプス前抑制性]]、と呼ぶことがあるため、抑制性シナプスを特に「[[シナプス後抑制性]]」と区別して呼ぶこともある。
135行目: 129行目:
 シナプス前終末からの伝達物質放出機構についての研究では、開口放出に関連する分子群の機能解析が構造生物学的なデータの蓄積を含めて着実に進展しており、さらに遺伝子改変動物を利用した研究を統合することで、シナプス前終末における分子機構の包括的な理解が進むことが期待される。
 シナプス前終末からの伝達物質放出機構についての研究では、開口放出に関連する分子群の機能解析が構造生物学的なデータの蓄積を含めて着実に進展しており、さらに遺伝子改変動物を利用した研究を統合することで、シナプス前終末における分子機構の包括的な理解が進むことが期待される。


 ニューレキシン/ニューロリギンなどのシナプス接着分子の異常は精神疾患とも深く関わることが明らかになっており、[[エピゲノミック]]な制御や[[コピー数多型]]などの新しい知見も含めて今後の研究の発展が望まれる<ref><pubmed> 20510934 </pubmed></ref> <ref><pubmed> 19563756 </pubmed></ref>。
 ニューレキシン/ニューロリギンなどの[[シナプス接着分子]]の異常は[[精神疾患]]とも深く関わることが明らかになっており、[[エピゲノミック]]な制御や[[コピー数多型]]などの新しい知見も含めて今後の研究の発展が望まれる<ref><pubmed> 20510934 </pubmed></ref> <ref><pubmed> 19563756 </pubmed></ref>。
新規研究法の開発も目覚しい。[[二光子励起顕微鏡法]]や神経伝達物質の uncaging法により、スパイン形成の機構に迫る試みがなされており、[[細胞骨格]]タンパク質や[[足場タンパク質]]の関与もホットなトピックである<ref><pubmed> 15190253 </pubmed></ref> <ref><pubmed> 15378037 </pubmed></ref>。
新規研究法の開発も目覚しい。[[二光子励起顕微鏡法]]や神経伝達物質の uncaging法により、スパイン形成の機構に迫る試みがなされており、[[細胞骨格]]タンパク質や[[足場タンパク質]]の関与もホットなトピックである<ref><pubmed> 15190253 </pubmed></ref> <ref><pubmed> 15378037 </pubmed></ref>。