「シナプトタグミン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
(3人の利用者による、間の13版が非表示)
4行目: 4行目:
<font size="+1">[http://researchmap.jp/read0210534 福田 光則]</font><br>
<font size="+1">[http://researchmap.jp/read0210534 福田 光則]</font><br>
''東北大学 大学院生命科学研究科 生命機能科学専攻''<br>
''東北大学 大学院生命科学研究科 生命機能科学専攻''<br>
DOI XXXX/XXXX 原稿受付日:2012年5月9日 原稿完成日:2013年8月X日<br>
DOI:<selfdoi /> 原稿受付日:2012年5月9日 原稿完成日:2013年8月21日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>
11行目: 11行目:
| Symbol = C2
| Symbol = C2
| Name = Human Synaptotagmin 1 C2 domains.   
| Name = Human Synaptotagmin 1 C2 domains.   
| image = Synaptotagmin_C2_domain.png‎
| image = 2R83.pdb
| width = 200
| width = 200
| caption = Human Synaptotagmin 1 C2A and C2B domains.  Based on 2R83.
| caption = ヒトシナプトタグミン1のC2A、C2Bドメイン。2R83による<ref><pubmed>17956130</pubmed></ref>。
| Pfam = PF00168
| Pfam = PF00168
| InterPro = IPR000008
| InterPro = IPR000008
25行目: 25行目:
| PDB = {{PDB3|1a25}}B:173-260 {{PDB3|1bci}}A:20-106 {{PDB3|1byn}}A:158-244 {{PDB3|1cjy}}A:20-106 {{PDB3|1djg}}B:631-720 {{PDB3|1djh}}B:631-720 {{PDB3|1dji}}B:631-720 {{PDB3|1djw}}B:631-720 {{PDB3|1djx}}A:631-720 {{PDB3|1djy}}A:631-720 {{PDB3|1djz}}B:631-720 {{PDB3|1dqv}}A:314-400 {{PDB3|1dsy}}A:173-260 {{PDB3|1gmi}}A:8-99 {{PDB3|1k5w}}A:289-377 {{PDB3|1qas}}B:631-720 {{PDB3|1qat}}B:631-720 {{PDB3|1rh8}}A:4654-4752 {{PDB3|1rlw}}A:20-106 {{PDB3|1tjm}}A:289-377 {{PDB3|1tjx}}A:289-377 {{PDB3|1ugk}}A:170-258 {{PDB3|1uov}}A:289-377 {{PDB3|1uow}}A:289-377 {{PDB3|1v27}}A:822-913 {{PDB3|1w15}}A:304-392 {{PDB3|1w16}}A:304-392 {{PDB3|1wfj}}A:6-87 {{PDB3|1wfm}}A:189-259 {{PDB3|2b3r}}A:1574-1662 {{PDB3|2bwq}}A:760-851 {{PDB3|2isd}}B:631-720 {{PDB3|3rpb}}A:557-645  
| PDB = {{PDB3|1a25}}B:173-260 {{PDB3|1bci}}A:20-106 {{PDB3|1byn}}A:158-244 {{PDB3|1cjy}}A:20-106 {{PDB3|1djg}}B:631-720 {{PDB3|1djh}}B:631-720 {{PDB3|1dji}}B:631-720 {{PDB3|1djw}}B:631-720 {{PDB3|1djx}}A:631-720 {{PDB3|1djy}}A:631-720 {{PDB3|1djz}}B:631-720 {{PDB3|1dqv}}A:314-400 {{PDB3|1dsy}}A:173-260 {{PDB3|1gmi}}A:8-99 {{PDB3|1k5w}}A:289-377 {{PDB3|1qas}}B:631-720 {{PDB3|1qat}}B:631-720 {{PDB3|1rh8}}A:4654-4752 {{PDB3|1rlw}}A:20-106 {{PDB3|1tjm}}A:289-377 {{PDB3|1tjx}}A:289-377 {{PDB3|1ugk}}A:170-258 {{PDB3|1uov}}A:289-377 {{PDB3|1uow}}A:289-377 {{PDB3|1v27}}A:822-913 {{PDB3|1w15}}A:304-392 {{PDB3|1w16}}A:304-392 {{PDB3|1wfj}}A:6-87 {{PDB3|1wfm}}A:189-259 {{PDB3|2b3r}}A:1574-1662 {{PDB3|2bwq}}A:760-851 {{PDB3|2isd}}B:631-720 {{PDB3|3rpb}}A:557-645  
}}
}}
英語名:Synaptotagmin 独:Synaptotagmine
英語名:synaptotagmin 独:Synaptotagmine 仏:synaptotagmin


{{box
{{box
38行目: 38行目:
 これらの過程の中で、特にシナプス小胞と細胞膜の融合は細胞外からの[[カルシウム]]イオン流入によって厳密に制御されていることから、シナプス小胞上にはカルシウムイオン上昇を感知するカルシウムセンサー(カルシウムイオンを結合し膜融合を促進する分子で、膜融合の装置そのものではない)の存在が提唱されてきた<ref name=ref8><pubmed>11399430</pubmed></ref>。
 これらの過程の中で、特にシナプス小胞と細胞膜の融合は細胞外からの[[カルシウム]]イオン流入によって厳密に制御されていることから、シナプス小胞上にはカルシウムイオン上昇を感知するカルシウムセンサー(カルシウムイオンを結合し膜融合を促進する分子で、膜融合の装置そのものではない)の存在が提唱されてきた<ref name=ref8><pubmed>11399430</pubmed></ref>。


 シナプトタグミン1は1981年にシナプス小胞や内[[分泌]]細胞の[[有芯小胞]]上に豊富に存在する分子量65,000のシナプス小胞抗原タンパク質(p65)として報告され<ref name=ref16><pubmed>7298720</pubmed></ref>、1990年にその構造が明らかにされた<ref name=ref1><pubmed>2333096</pubmed></ref>。遺伝学、生化学などを駆使した近年の目覚ましい研究成果により、現在ではシナプス小胞上に存在するシナプトタグミン1分子が主要なカルシウムセンサー(唯一ではなく、主に低親和性カルシウムセンサーとして機能)であると考えられている<ref name=ref4><pubmed>15217342</pubmed></ref><ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of Exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref><ref name=ref6><pubmed>16698267</pubmed></ref><ref name=ref7><pubmed>18275379</pubmed></ref>。
 シナプトタグミン1は1981年にシナプス小胞や内[[分泌]]細胞の[[有芯小胞]]上に豊富に存在する分子量65,000のシナプス小胞抗原タンパク質(p65)として報告され<ref name=ref9><pubmed>7298720</pubmed></ref>、1990年にその構造が明らかにされた<ref name=ref1><pubmed>2333096</pubmed></ref>。遺伝学、生化学などを駆使した近年の目覚ましい研究成果により、現在ではシナプス小胞上に存在するシナプトタグミン1分子が主要なカルシウムセンサー(唯一ではなく、主に低親和性カルシウムセンサーとして機能)であると考えられている<ref name=ref4><pubmed>15217342</pubmed></ref><ref name=ref5></ref><ref name=ref6></ref><ref name=ref7><pubmed>18275379</pubmed></ref>。


 また、シナプス小胞以外のカルシウム依存的な小胞輸送過程に他のシナプトタグミンアイソフォームの関与も相次いで報告され、シナプトタグミンファミリーがかなり普遍的なカルシウムセンサーではないかという概念が定着しつつある。
 また、シナプス小胞以外のカルシウム依存的な小胞輸送過程に他のシナプトタグミンアイソフォームの関与も相次いで報告され、シナプトタグミンファミリーがかなり普遍的なカルシウムセンサーではないかという概念が定着しつつある。
46行目: 46行目:
[[image:シナプトタグミン図2.jpg|thumb|300px|'''図2 シナプトタグミンの構造'''<br>シナプトタグミンはN末端側に膜貫通領域を持つ1回膜貫通型の膜タンパク質で、C末端側の細胞質領域にはC2領域と呼ばれるタンパク質モチーフを2つ持っている(N末端側から、内腔領域、膜貫通領域、スペーサー領域、C2A領域、C2B領域と命名)。]]
[[image:シナプトタグミン図2.jpg|thumb|300px|'''図2 シナプトタグミンの構造'''<br>シナプトタグミンはN末端側に膜貫通領域を持つ1回膜貫通型の膜タンパク質で、C末端側の細胞質領域にはC2領域と呼ばれるタンパク質モチーフを2つ持っている(N末端側から、内腔領域、膜貫通領域、スペーサー領域、C2A領域、C2B領域と命名)。]]


 シナプトタグミンはN末端側に膜貫通領域を持つ1回膜貫通型の膜タンパク質で、C末端側の細胞質領域にはC2領域と呼ばれる[[プロテインキナーゼC]]のC2調節領域に由来するタンパク質モチーフを2つ持っている(N末端側から、内腔領域、膜貫通領域、スペーサー領域、C2A領域、C2B領域と命名)(図2)。
 シナプトタグミンはN末端側に膜貫通領域を持つ1回膜貫通型の膜タンパク質で、C末端側の細胞質領域にはC2領域と呼ばれる[[プロテインキナーゼC]]のC2調節領域に由来するタンパク質モチーフを2つ持っている(N末端側から、内腔領域、膜貫通領域、スペーサー領域、C2A領域、C2B領域と命名)(図2)。シナプトタグミン1の二つのC2領域はアミノ酸レベルで40%以上の相同性を示すため、基本的には同様な立体構造を取り(8本の[[wikipedia:ja:βストランド|βストランド]]と3本のカルシウム結合ループにより構成)共にカルシウム結合能を示すが<ref name=ref12><pubmed>7697723</pubmed></ref><ref name=ref13><pubmed>11754837</pubmed></ref>、互いに異なる生化学的性質も示す。一例を挙げると、C2B領域にはカルシウム非依存的に[[イノシトールポリリン酸]]、[[アダプター複合体]]AP-2、[[ニューレキシン]](neurexin)などが結合し、またカルシウム依存的にC2B領域同士が結合し多量体を形成するが<ref name=ref14><pubmed>7961887</pubmed></ref><ref name=ref15><pubmed>9830048</pubmed></ref>、これらの性質はC2A領域には見られない(図2)。カルシウム依存的にC2領域に結合する分子とシナプトタグミン1の結合に必要なカルシウム濃度は5-100μMであり、この濃度は神経細胞で開口放出に必要とされるカルシウムイオン濃度とほぼ一致している<ref name=ref8><pubmed>11399430</pubmed></ref>。


==ファミリー==
==ファミリー==
[[image:シナプトタグミン図3.jpg|thumb|300px|'''図3 シナプトタグミンファミリーの系統樹'''<br>CLUSTALWプログラムにより作成したシナプトタグミン1から15までの系統樹を示す。シナプトタグミンファミリーはアミノ酸配列の相同性からシナプトタグミン1/2/9(赤)、シナプトタグミン4/11(緑)、シナプトタグミン3/5/6/10(青)、およびそれ以外のシナプトタグミンに分類される。カルシウム結合能を持つアイソフォームを青色の四角で囲った。なお、シナプトタグミン4はカルシウム非結合型に分類されることが多いが、アストロサイトなど一部の細胞でカルシウムセンサーとして機能することが報告されている(点線の四角)。]]
[[image:シナプトタグミン図3.jpg|thumb|300px|'''図3 シナプトタグミンファミリーの系統樹'''<br>CLUSTALWプログラムにより作成したシナプトタグミン1から15までの系統樹を示す。シナプトタグミンファミリーはアミノ酸配列の相同性からシナプトタグミン1/2/9(赤)、シナプトタグミン4/11(緑)、シナプトタグミン3/5/6/10(青)、およびそれ以外のシナプトタグミンに分類される。カルシウム結合能を持つアイソフォームを青色の四角で囲った。なお、シナプトタグミン4はカルシウム非結合型に分類されることが多いが、アストロサイトなど一部の細胞でカルシウムセンサーとして機能することが報告されている(点線の四角)。]]


 ほ乳類には少なくとも17種類のアイソフォームが存在し、このうち[[シナプトタグミン1]], [[シナプトタグミン4|4]], [[シナプトタグミン7|7]], [[シナプトタグミン12|12]], [[シナプトタグミン14|14]]は[[ショウジョウバエ]]から[[wikipedia:ja:ほ乳類|ほ乳類]]に至るまで進化的に保存されている<ref name=ref2><pubmed>12801916</pubmed></ref><ref name=ref3><pubmed>20078875</pubmed></ref>。シナプトタグミンファミリーはアミノ酸配列の相同性からシナプトタグミン1/2/9、シナプトタグミン4/11、シナプトタグミン3/5/6/10、およびそれ以外のシナプトタグミンに分類される<ref name=ref10><pubmed>10531343</pubmed></ref>(図3)。なお、[[シナプトタグミン16]](元々の名称はStrep14)および[[シナプトタグミン17]](元々の名称はB/K)は膜貫通領域が欠損しているため、厳密にはシナプトタグミンファミリーの範疇には属さない<ref name=ref2><pubmed>12801916</pubmed></ref>。アミノ酸の相同性とは別に、カルシウム結合能の有無で機能的にカルシウム結合型とカルシウム非結合型に分類されることもある(図3)。シナプトタグミンファミリー間で機能領域と考えられているC2A領域およびC2B領域は高度に保存されているが、他の領域(内腔領域、膜貫通領域およびスペーサー領域)ではほとんど相同性を示さない。シナプトタグミン1, [[シナプトタグミン2|2]]では、細胞外に位置する内腔領域で[[N結合型糖鎖]]および[[O結合型糖鎖]]の修飾を受けている。また、多くのアイソフォームで膜貫通領域の近傍で[[アシル化]]による修飾([[システイン]]残基への[[脂肪酸]]の付加)を受け、オリゴマー形成が促進される<ref name=ref9><pubmed>11514560</pubmed></ref>。なお、シナプトタグミン3/5/6/10はN末端側の内腔領域に保存されたシステイン残基を持ち、ジスルフィド結合を介してオリゴマーを形成する<ref name=ref10><pubmed>10531343</pubmed></ref>。シナプトタグミン1の二つのC2領域はアミノ酸レベルで40%以上の相同性を示すため、基本的には同様な立体構造を取り(8本の[[wikipedia:ja:βストランド|βストランド]]と3本のカルシウム結合ループにより構成)共にカルシウム結合能を示すが<ref name=ref11><pubmed>7697723</pubmed></ref><ref name=ref12><pubmed>11754837</pubmed></ref>、互いに異なる生化学的性質も示す。一例を挙げると、C2B領域にはカルシウム非依存的に[[イノシトールポリリン酸]]、[[アダプター複合体]]AP-2、[[ニューレキシン]](neurexin)などが結合し、またカルシウム依存的にC2B領域同士が結合し多量体を形成するが<ref name=ref13><pubmed>7961887</pubmed></ref><ref name=ref14><pubmed>9830048</pubmed></ref>、これらの性質はC2A領域には見られない(図2)。カルシウム依存的にC2領域に結合する分子とシナプトタグミン1の結合に必要なカルシウム濃度は5-100μMであり、この濃度は神経細胞で開口放出に必要とされるカルシウムイオン濃度とほぼ一致している<ref name=ref8><pubmed>11399430</pubmed></ref>。
 ほ乳類には少なくとも17種類のアイソフォームが存在し、このうち[[シナプトタグミン1]], [[シナプトタグミン4|4]], [[シナプトタグミン7|7]], [[シナプトタグミン12|12]], [[シナプトタグミン14|14]]は[[ショウジョウバエ]]から[[wikipedia:ja:ほ乳類|ほ乳類]]に至るまで進化的に保存されている<ref name=ref2><pubmed>12801916</pubmed></ref><ref name=ref3><pubmed>20078875</pubmed></ref>。シナプトタグミンファミリーはアミノ酸配列の相同性からシナプトタグミン1/2/9、シナプトタグミン4/11、シナプトタグミン3/5/6/10、およびそれ以外のシナプトタグミンに分類される<ref name=ref10><pubmed>10531343</pubmed></ref>(図3)。なお、[[シナプトタグミン16]](元々の名称はStrep14)および[[シナプトタグミン17]](元々の名称はB/K)は膜貫通領域が欠損しているため、厳密にはシナプトタグミンファミリーの範疇には属さない<ref name=ref2><pubmed>12801916</pubmed></ref>。


 なお、シナプトタグミンファミリーと同様にC末端側に2つのC2領域を持つタンパク質ファミリーとして[[Doc2]]/[[rabphilin]]ファミリーやシナプトタグミン様タンパク質(synaptotagmin-like protein, Slp)ファミリーが知られており、一部のものではシナプトタグミンとは異なるタイプのカルシウムセンサー(神経伝達物質放出の際の高親和性カルシウムセンサーなど)としての機能が提唱されている<ref name=ref15><pubmed>18726178</pubmed></ref><ref name=ref16><pubmed>20150444</pubmed></ref>。
 アミノ酸の相同性とは別に、カルシウム結合能の有無で機能的にカルシウム結合型とカルシウム非結合型に分類されることもある(図3)。シナプトタグミンファミリー間で機能領域と考えられているC2A領域およびC2B領域は高度に保存されているが、他の領域(内腔領域、膜貫通領域およびスペーサー領域)ではほとんど相同性を示さない。
 
 シナプトタグミン1, [[シナプトタグミン2|2]]では、細胞外に位置する内腔領域で[[N結合型糖鎖]]および[[O結合型糖鎖]]の修飾を受けている。また、多くのアイソフォームで膜貫通領域の近傍で[[アシル化]]による修飾([[システイン]]残基への[[脂肪酸]]の付加)を受け、オリゴマー形成が促進される<ref name=ref11><pubmed>11514560</pubmed></ref>。なお、シナプトタグミン3/5/6/10はN末端側の内腔領域に保存されたシステイン残基を持ち、ジスルフィド結合を介してオリゴマーを形成する<ref name=ref10><pubmed>10531343</pubmed></ref>。
 
 なお、シナプトタグミンファミリーと同様にC末端側に2つのC2領域を持つタンパク質ファミリーとして[[Doc2]]/[[rabphilin]]ファミリーやシナプトタグミン様タンパク質(synaptotagmin-like protein, Slp)ファミリーが知られており、一部のものではシナプトタグミンとは異なるタイプのカルシウムセンサー(神経伝達物質放出の際の高親和性カルシウムセンサーなど)としての機能が提唱されている<ref name=ref16><pubmed>18726178</pubmed></ref><ref name=ref17><pubmed>   20150444</pubmed></ref>。


==発現==
==発現==
65行目: 69行目:
|style="background-color:#d3d3d3; text-align:center" |細胞内局在
|style="background-color:#d3d3d3; text-align:center" |細胞内局在
|-
|-
|シナプトタグミン 1
|[http://mouse.brain-map.org/experiment/show/1015 シナプトタグミン 1]
|大脳、嗅球などの神経細胞
|[[大脳]]、[[嗅球]]などの神経細胞
|シナプス小胞、成長円錐小胞
|シナプス小胞、[[成長円錐]]小胞
|-
|-
|シナプトタグミン 2
|[http://mouse.brain-map.org/experiment/show/71152527 シナプトタグミン 2]
|小脳、脳幹などの神経細胞
|[[小脳]]、[[脳幹]]などの神経細胞
|シナプス小胞
|シナプス小胞
|-
|-
|シナプトタグミン 4
|[http://mouse.brain-map.org/experiment/show/2652 シナプトタグミン 4]
|脳組織全般の神経細胞、アストロサイト(グリア細胞)
|脳組織全般の神経細胞、[[アストロサイト]]([[グリア細胞]])
|ゴルジ体、有芯小胞
|[[ゴルジ体]]、[[有芯小胞]]
|-
|-
|シナプトタグミン 7
|[http://mouse.brain-map.org/experiment/show/1036 シナプトタグミン 7]
|脳組織全般、交感神経細胞
|脳組織全般、[[交感神経]]細胞
|前シナプス膜、リソソーム
|[[シナプス前膜]]、[[リソソーム]]
|-
|-
|シナプトタグミン 9
|[http://mouse.brain-map.org/experiment/show/69887529 シナプトタグミン 9]
|大脳辺縁系、線条体の神経細胞
|[[大脳辺縁系]]、[[線条体]]の神経細胞
|シナプス小胞、有芯小胞
|シナプス小胞、有芯小胞
|-
|-
|シナプトタグミン 10
|[http://mouse.brain-map.org/experiment/show/79394156 シナプトタグミン 10]
|嗅球の神経細胞
|嗅球の神経細胞
|有芯小胞
|有芯小胞
|-
|-
|シナプトタグミン 12
|[http://mouse.brain-map.org/experiment/show/79544874 シナプトタグミン 12]
|脳組織全般
|脳組織全般
|シナプス小胞
|シナプス小胞
|-
|-
|}
|}
タンパク質名はAllen Brain Atlasヘリンクしている。


==機能==
==機能==
101行目: 106行目:
 このようなシナプトタグミン1の機能の多様性は、それぞれのC2領域の固有の機能と密接な関連があるものと考えられている。例えば、C2A領域のリン脂質結合能が減少している変異型シナプトタグミン1(R233Q)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が抑制されるが<ref name=ref22><pubmed>11242035</pubmed></ref>、逆にC2A領域のカルシウム依存的なシンタキシンへの結合が増加している優勢変異型シナプトタグミン1(D232N)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が増加する<ref name=ref23><pubmed>17135417</pubmed></ref>。一方で、C2A領域へのカルシウムイオン結合能は神経伝達物質放出に必須ではないという報告もあり混沌としているが<ref name=ref24><pubmed>12110845</pubmed></ref>、シナプトタグミン1のC2A領域に対する機能阻害[[wikipedia:ja:抗体|抗体]]によりシナプス小胞の融合過程が著しく阻害されることから<ref name=ref25><pubmed>7479868</pubmed></ref>、C2A領域の機能はやはりシナプス小胞の融合促進に重要と考えられている。
 このようなシナプトタグミン1の機能の多様性は、それぞれのC2領域の固有の機能と密接な関連があるものと考えられている。例えば、C2A領域のリン脂質結合能が減少している変異型シナプトタグミン1(R233Q)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が抑制されるが<ref name=ref22><pubmed>11242035</pubmed></ref>、逆にC2A領域のカルシウム依存的なシンタキシンへの結合が増加している優勢変異型シナプトタグミン1(D232N)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が増加する<ref name=ref23><pubmed>17135417</pubmed></ref>。一方で、C2A領域へのカルシウムイオン結合能は神経伝達物質放出に必須ではないという報告もあり混沌としているが<ref name=ref24><pubmed>12110845</pubmed></ref>、シナプトタグミン1のC2A領域に対する機能阻害[[wikipedia:ja:抗体|抗体]]によりシナプス小胞の融合過程が著しく阻害されることから<ref name=ref25><pubmed>7479868</pubmed></ref>、C2A領域の機能はやはりシナプス小胞の融合促進に重要と考えられている。


 これに対して、C2B領域はシナプス小胞の融合促進だけではなく<ref name=ref26><pubmed>12110842</pubmed></ref><ref name=ref27><pubmed>15456828</pubmed></ref>、シナプス小胞の[[エンドサイトーシス]]やドッキングなどの過程<ref name=ref28><pubmed>11114192</pubmed></ref><ref name=ref29><pubmed>19716167</pubmed></ref>にも関与するものと考えられている。例えば、[[wikipedia:ja:ヤリイカ|ヤリイカ]]巨大[[軸索]]ではC2B領域に対する機能阻害抗体の導入により、シナプス小胞の融合過程には全く影響がなく、シナプス小胞のリサイクリングの過程が特異的に阻害される(恐らくはAP-2との結合を阻害)<ref name=ref30><pubmed>15591349</pubmed></ref>。一方、C2Bドメインに特異的に結合するイノシトールポリリン酸([[イノシトール1,3,4,5-四リン酸]](IP4)など)をシナプス前部に導入すると、C2B領域に結合することによりシナプス小胞の融合過程が顕著に阻害される<ref name=ref31><pubmed>7809161</pubmed></ref>。
 これに対して、C2B領域はシナプス小胞の融合促進だけではなく<ref name=ref26><pubmed>12110842</pubmed></ref><ref name=ref27><pubmed>15456828</pubmed></ref>、シナプス小胞の[[エンドサイトーシス]]やドッキングなどの過程<ref name=ref28><pubmed>11114192</pubmed></ref><ref name=ref29><pubmed>19716167</pubmed></ref>にも関与するものと考えられている。例えば、[[wikipedia:ja:ヤリイカ|ヤリイカ]]巨大[[軸索]]ではC2B領域に対する機能阻害抗体の導入により、シナプス小胞の融合過程には全く影響がなく、シナプス小胞のリサイクリングの過程が特異的に阻害される(恐らくはAP-2との結合を阻害)<ref name=ref30><pubmed>15591349</pubmed></ref>。一方、C2Bドメインに特異的に結合するイノシトールポリリン酸([[イノシトール1,3,4,5-四リン酸]](IP<SUB>4</SUB>)など)をシナプス前部に導入すると、C2B領域に結合することによりシナプス小胞の融合過程が顕著に阻害される<ref name=ref31><pubmed>7809161</pubmed></ref>。


 さらに、C2B領域(特にC2Bエフェクタードメインと呼ばれるβ4ストランド上の塩基性クラスター<ref name=ref13><pubmed>7961887</pubmed></ref><ref name=ref14><pubmed>9830048</pubmed></ref>)はカルシウム刺激がないときには融合を抑制するようなクランプ的な機能を併せ持つと想定されており<ref name=ref32><pubmed>8990201</pubmed></ref><ref name=ref33><pubmed>21338883</pubmed></ref>、ショウジョウバエなどのシナプトタグミン1変異体では自発的な神経伝達物質放出が増大することが知られている<ref name=ref34><pubmed>12467593</pubmed></ref>。このようなC2B領域の機能の多様性は、C2B領域に複数のエフェクター結合領域が存在することに起因するものと考えられている<ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref>。また、C2B領域は必ずしも単独で機能するのではなく、一部C2A領域と協調して小胞の融合を促進するモデルも提唱されている<ref name=ref35><pubmed>10811903</pubmed></ref><ref name=ref36><pubmed>15046725</pubmed></ref>。
 さらに、C2B領域(特にC2Bエフェクタードメインと呼ばれるβ4ストランド上の塩基性クラスター<ref name=ref14><pubmed>7961887</pubmed></ref><ref name=ref15><pubmed>9830048</pubmed></ref>)はカルシウム刺激がないときには融合を抑制するようなクランプ的な機能を併せ持つと想定されており<ref name=ref32><pubmed>8990201</pubmed></ref><ref name=ref33><pubmed>21338883</pubmed></ref>、ショウジョウバエなどのシナプトタグミン1変異体では自発的な神経伝達物質放出が増大することが知られている<ref name=ref34><pubmed>12467593</pubmed></ref>。このようなC2B領域の機能の多様性は、C2B領域に複数のエフェクター結合領域が存在することに起因するものと考えられている<ref name=ref5></ref>。また、C2B領域は必ずしも単独で機能するのではなく、一部C2A領域と協調して小胞の融合を促進するモデルも提唱されている<ref name=ref35><pubmed>10811903</pubmed></ref><ref name=ref36><pubmed>15046725</pubmed></ref>。


 シナプトタグミンによるカルシウム依存的な小胞融合の促進メカニズムとして現在最も有力な仮説は、膜の融合装置と考えられる[[SNAREタンパク質]]とシナプトタグミンとのカルシウム依存的な相互作用により小胞膜と細胞膜の融合が促進されるというモデルである。実際、精製したSNAREタンパク質を組み込んだ2種類のリポソーム([[v-SNARE]][[シナプトブレビン]]を組み込んだリポソームおよび[[t-SNARE]][[シンタキシン]]と[[SNAP-25]]を組み込んだリポソーム)にカルシウムイオンとシナプトタグミン1の細胞質領域を加えることにより2種類のリポソームの膜融合が顕著に促進される<ref name=ref37><pubmed>15044754</pubmed></ref>。一方、シナプトタグミンのC2領域のカルシウム依存的なリン脂質の結合が小胞の融合を促進するという仮説や、C2B領域同士のカルシウム依存的なオリゴマー化がシナプス小胞と細胞膜の融合により生じた孔を拡大させるという仮説も提唱されている<ref name=ref38><pubmed>12931189</pubmed></ref>。
 シナプトタグミンによるカルシウム依存的な小胞融合の促進メカニズムとして現在最も有力な仮説は、膜の融合装置と考えられる[[SNAREタンパク質]]とシナプトタグミンとのカルシウム依存的な相互作用により小胞膜と細胞膜の融合が促進されるというモデルである。実際、精製したSNAREタンパク質を組み込んだ2種類のリポソーム([[v-SNARE]][[シナプトブレビン]]を組み込んだリポソームおよび[[t-SNARE]][[シンタキシン]]と[[SNAP-25]]を組み込んだリポソーム)にカルシウムイオンとシナプトタグミン1の細胞質領域を加えることにより2種類のリポソームの膜融合が顕著に促進される<ref name=ref37><pubmed>15044754</pubmed></ref>。一方、シナプトタグミンのC2領域のカルシウム依存的なリン脂質の結合が小胞の融合を促進するという仮説や、C2B領域同士のカルシウム依存的なオリゴマー化がシナプス小胞と細胞膜の融合により生じた孔を拡大させるという仮説も提唱されている<ref name=ref38><pubmed>12931189</pubmed></ref>。

案内メニュー