「ジャンクトフィリン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
3行目: 3行目:
 神経・筋などの興奮性細胞においては、細胞表層膜と小胞体膜とが近接した結合膜構造が存在する<ref><pubmed>1426638</pubmed></ref>。神経細胞では subsurface cisternと呼ばれるこの構造は、骨格筋細胞ではtriad junctionと呼ばれ、骨格筋における興奮収縮連関との関連に着目した研究が進められている。骨格筋興奮収縮連関においては、細胞膜上の電位依存性カルシウムチャネルであるジヒドロピリジン受容体(L型カルシウムチャネル)と、小胞体膜上のカルシウム放出チャネルであるリアノジン受容体とが蛋白質間相互作用を介して共役することで、脱分極刺激による小胞体からのカルシウム放出が引き起こされ、筋収縮が起こる<ref><pubmed>16702757</pubmed></ref>。異なる二つの膜系に存在するチャネル分子が相互作用により共役するためには、上述の結合膜構造が形成され機能的なマイクロドメインが形成される必要があると考えられる。ジャンクトフィリン (junctophilin; JP) は、骨格筋におけるtriad junction形成に必要な分子として単離された分子量72-90kDa程度のタンパク質である<ref name=ref3><pubmed>10949023</pubmed></ref>。最初に発見された、骨格筋で特異的に発現する1型ジャンクトフィリン(JP-1)に加え、相同クローニングにより2型~4型ジャンクトフィリン (JP-2~JP-4) が発見され、現在までに4種類のサブタイプが同定されている<ref name=ref4><pubmed>14559359</pubmed></ref>。脳においては、JP-3およびJP-4が多くの神経細胞に重複して発現分布しており、それぞれ単独のノックアウトマウスでは際立った異常は認められないが、JP-3とJP-4の二重欠損マウスでは、個体、シナプス、神経細胞レベルでの機能阻害が報告されている<ref name=ref5><pubmed>18607668</pubmed></ref>。
 神経・筋などの興奮性細胞においては、細胞表層膜と小胞体膜とが近接した結合膜構造が存在する<ref><pubmed>1426638</pubmed></ref>。神経細胞では subsurface cisternと呼ばれるこの構造は、骨格筋細胞ではtriad junctionと呼ばれ、骨格筋における興奮収縮連関との関連に着目した研究が進められている。骨格筋興奮収縮連関においては、細胞膜上の電位依存性カルシウムチャネルであるジヒドロピリジン受容体(L型カルシウムチャネル)と、小胞体膜上のカルシウム放出チャネルであるリアノジン受容体とが蛋白質間相互作用を介して共役することで、脱分極刺激による小胞体からのカルシウム放出が引き起こされ、筋収縮が起こる<ref><pubmed>16702757</pubmed></ref>。異なる二つの膜系に存在するチャネル分子が相互作用により共役するためには、上述の結合膜構造が形成され機能的なマイクロドメインが形成される必要があると考えられる。ジャンクトフィリン (junctophilin; JP) は、骨格筋におけるtriad junction形成に必要な分子として単離された分子量72-90kDa程度のタンパク質である<ref name=ref3><pubmed>10949023</pubmed></ref>。最初に発見された、骨格筋で特異的に発現する1型ジャンクトフィリン(JP-1)に加え、相同クローニングにより2型~4型ジャンクトフィリン (JP-2~JP-4) が発見され、現在までに4種類のサブタイプが同定されている<ref name=ref4><pubmed>14559359</pubmed></ref>。脳においては、JP-3およびJP-4が多くの神経細胞に重複して発現分布しており、それぞれ単独のノックアウトマウスでは際立った異常は認められないが、JP-3とJP-4の二重欠損マウスでは、個体、シナプス、神経細胞レベルでの機能阻害が報告されている<ref name=ref5><pubmed>18607668</pubmed></ref>。


目次
1 構造
2 サブタイプ
3 発現分布
4 機能
5 関連項目
6 参考文献


   
   
== 構造 ==
== 構造 ==
 ジャンクトフィリンは、分子量72-90kDa程度のタンパク質である。膜貫通セグメントはカルボキシル末端に1箇所のみ存在し、アミノ末端にはシグナル配列が存在しない。一方、アミノ末端側には14アミノ酸よりなるMORNモチーフと命名された繰り返し配列が8回現れる。部分欠損体の発現実験により、JP-1の細胞表層膜との結合にはMORNモチーフが必要であることが示されている。したがって、MORNモチーフを介して細胞表層膜と結合する一方で、カルボキシル末端側の膜貫通セグメントにおいて小胞体膜を貫通することで、ジャンクトフィリンは両膜を架橋し、結合膜構造の形成に寄与すると考えられている<ref name=ref3 />。
 ジャンクトフィリンは、分子量72-90kDa程度のタンパク質である。膜貫通セグメントはカルボキシル末端に1箇所のみ存在し、アミノ末端にはシグナル配列が存在しない。一方、アミノ末端側には14アミノ酸よりなるMORNモチーフと命名された繰り返し配列が8回現れる。部分欠損体の発現実験により、JP-1の細胞表層膜との結合にはMORNモチーフが必要であることが示されている。したがって、MORNモチーフを介して細胞表層膜と結合する一方で、カルボキシル末端側の膜貫通セグメントにおいて小胞体膜を貫通することで、ジャンクトフィリンは両膜を架橋し、結合膜構造の形成に寄与すると考えられている<ref name=ref3 />。


== サブタイプ ==
== サブタイプ ==
 現在まで、JP-1~JP-4まで、4種類のサブタイプが同定されている。マウスでは、アミノ酸数は、JP-1が660、JP-2が696、JP-3が744、JP-4が628であり<ref name=ref4 />、サブタイプ間の相同性は約40%程度と見積もられている<ref name=ref3 />。ウェスタンブロットから推測される分子量は72~95kDaであり、ジャンクトフィリン分子全体的に、アミノ酸数から推測される分子量よりも大きくなる傾向があるが、その原因は解明されていない<ref name=ref4 />。MORN配列、およびカルボキシル末端側の膜貫通領域は、サブタイプ間の相同性がそれぞれ80%、50%と、相対的に高くなっている領域である。しかし、カルボキシル末端側にある膜貫通領域を除けば、MORN配列を含め、相同性の高い部分はアミノ酸番号400番台前半までの部分に集中しており<ref name=ref4 />、C末側の膜貫通領域直前の約250個のアミノ酸配列の相同性は、約6%程度と相対的に低くなっている<ref name=ref3 />。マウスジャンクトフィリンの各サブタイプにおけるアミノ酸配列の具体的な相違については、Nishi et al. 2003<ref name=ref4 />を参照されたい。
 現在まで、JP-1~JP-4まで、4種類のサブタイプが同定されている。マウスでは、アミノ酸数は、JP-1が660、JP-2が696、JP-3が744、JP-4が628であり<ref name=ref4 />、サブタイプ間の相同性は約40%程度と見積もられている<ref name=ref3 />。ウェスタンブロットから推測される分子量は72~95kDaであり、ジャンクトフィリン分子全体的に、アミノ酸数から推測される分子量よりも大きくなる傾向があるが、その原因は解明されていない<ref name=ref4 />。MORN配列、およびカルボキシル末端側の膜貫通領域は、サブタイプ間の相同性がそれぞれ80%、50%と、相対的に高くなっている領域である。しかし、カルボキシル末端側にある膜貫通領域を除けば、MORN配列を含め、相同性の高い部分はアミノ酸番号400番台前半までの部分に集中しており<ref name=ref4 />、C末側の膜貫通領域直前の約250個のアミノ酸配列の相同性は、約6%程度と相対的に低くなっている<ref name=ref3 />。マウスジャンクトフィリンの各サブタイプにおけるアミノ酸配列の具体的な相違については、Nishi et al. 2003<ref name=ref4 />を参照されたい。


== 発現分布 ==  
== 発現分布 ==  
 ジャンクトフィリンは興奮性細胞において、各サブタイプの発現が見られる。JP-1は骨格筋特異的に発現が見られる。JP-2は心臓と骨格筋で発現レベルが特に高いほか、消化管や気管の平滑筋でも発現が確認され、筋細胞全般に分布すると推測される<ref name="ref3" />。一方、JP-3、JP-4の発現は脳に限局的であり、両者の発現部位には重複性が見られるが、このことは、後述のノックアウトマウアスの表現型において、JP-3、JP-4それぞれの単独ノックアウトマウスでは顕著な異常が現れないことと互いに矛盾しない。脳内におけるJP-3、JP-4の発現レベルには部位による違いが見られ、海馬のCA1~CA3領域や歯状回、小脳顆粒層などでは、JP-3、JP-4ともに高レベルの発現が見られる。
 ジャンクトフィリンは興奮性細胞において、各サブタイプの発現が見られる。JP-1は骨格筋特異的に発現が見られる。JP-2は心臓と骨格筋で発現レベルが特に高いほか、消化管や気管の平滑筋でも発現が確認され、筋細胞全般に分布すると推測される<ref name="ref3" />。一方、JP-3、JP-4の発現は脳に限局的であり、両者の発現部位には重複性が見られるが、このことは、後述のノックアウトマウアスの表現型において、JP-3、JP-4それぞれの単独ノックアウトマウスでは顕著な異常が現れないことと互いに矛盾しない。脳内におけるJP-3、JP-4の発現レベルには部位による違いが見られ、海馬のCA1~CA3領域や歯状回、小脳顆粒層などでは、JP-3、JP-4ともに高レベルの発現が見られる。
尚、JP-3、JP-4の脳内分布に関する詳細については、Nishi et al. (2003)<ref name="ref4" />を参考にされたい。  
尚、JP-3、JP-4の脳内分布に関する詳細については、Nishi et al. (2003)<ref name="ref4" />を参考にされたい。  


== 機能 ==
== 機能 ==
 ジャンクトフィリンの機能はノックアウトマウスの表現型を元に推測されている。そこで、各サブタイプのノックアウトマウス(ただし、JP-3とJP-4については、両者の二重欠損マウスについても)の表現型を記す。
 ジャンクトフィリンの機能はノックアウトマウスの表現型を元に推測されている。そこで、各サブタイプのノックアウトマウス(ただし、JP-3とJP-4については、両者の二重欠損マウスについても)の表現型を記す。


===JP-1欠損マウス===  
===JP-1欠損マウス===  
44行目: 40行目:


 脳におけるRyRの機能については、RyR1やRyR2の遺伝子欠損マウスが、それぞれ出生致死<ref><pubmed>7515481</pubmed></ref>、胎生致死<ref><pubmed>9628868</pubmed></ref>を示すこと、さらに多くの神経細胞で複数のRyRサブタイプの発現が重複して見られることから、RyR遺伝子欠損動物を用いたアプローチでは解明が困難であった。しかし、JP-DKOマウスを用いた解析により、JP自身のチャネル間の機能的共役に関する機能的役割が明らかになっただけでなく、脳におけるRyRの機能についても知見が得られたことは特筆に値する。
 脳におけるRyRの機能については、RyR1やRyR2の遺伝子欠損マウスが、それぞれ出生致死<ref><pubmed>7515481</pubmed></ref>、胎生致死<ref><pubmed>9628868</pubmed></ref>を示すこと、さらに多くの神経細胞で複数のRyRサブタイプの発現が重複して見られることから、RyR遺伝子欠損動物を用いたアプローチでは解明が困難であった。しかし、JP-DKOマウスを用いた解析により、JP自身のチャネル間の機能的共役に関する機能的役割が明らかになっただけでなく、脳におけるRyRの機能についても知見が得られたことは特筆に値する。




== 関連項目 ==  
== 関連項目 ==  
カルシウム  
*[[カルシウム]]
リアノジン受容体  
*[[リアノジン受容体]]
IP3受容体
*[[IP3受容体]]




55行目: 52行目:


<references />
<references />
(執筆者:柿澤昌 担当編集委員:林康紀)