ジャンクトフィリン

提供:脳科学辞典
2013年4月6日 (土) 17:18時点におけるSkakizawa (トーク | 投稿記録)による版

ナビゲーションに移動 検索に移動

英語名:Junctophilin 英語略名:JP

 神経・筋などの興奮性細胞においては、細胞表層膜と小胞体膜とが近接した結合膜構造が存在する。神経細胞では subsurface cisternと呼ばれるこの構造は、骨格筋細胞ではtriad junctionと呼ばれ、骨格筋における興奮収縮連関との関連に着目した研究が進められている。骨格筋興奮収縮連関においては、細胞膜上の電位依存性カルシウムチャネルであるジヒドロピリジン受容体(L型カルシウムチャネル)と、小胞体膜上のカルシウム放出チャネルであるリアノジン受容体とが蛋白質間相互作用を介して共役することで、脱分極刺激による小胞体からのカルシウム放出が引き起こされ、筋収縮が起こる。異なる二つの膜系に存在するチャネル分子が相互作用により共役するためには、上述の結合膜構造が形成され機能的なマイクロドメインが形成される必要があると考えられる。ジャンクトフィリン (junctophilin; JP) は、骨格筋におけるtriad junction形成に必要な分子として単離された分子量72-90kDa程度のタンパク質である。最初に発見された、骨格筋で特異的に発現する1型ジャンクトフィリン(JP-1)に加え、相同クローニングにより2型~4型ジャンクトフィリン (JP-2~JP-4) が発見され、現在までに4種類のサブタイプが同定されている。脳においては、JP-3およびJP-4が多くの神経細胞に重複して発現分布しており、それぞれ単独のノックアウトマウスでは際立った異常は認められないが、JP-3とJP-4の二重欠損マウスでは、個体、シナプス、神経細胞レベルでの機能阻害が報告されている。


目次

1 構造
2 サブタイプ
3 発現分布
4 機能
5 関連項目
6 参考文献


構造  ジャンクトフィリンは、分子量72-90kDa程度のタンパク質である。膜貫通セグメントはカルボキシル末端に1箇所のみ存在し、アミノ末端にはシグナル配列が存在しない。一方、アミノ末端側には14アミノ酸よりなるMORNモチーフと命名された繰り返し配列が8回現れる。部分欠損体の発現実験により、JP-1の細胞表層膜との結合にはMORNモチーフが必要であることが示されている。したがって、MORNモチーフを介して細胞表層膜と結合する一方で、カルボキシル末端側の膜貫通セグメントにおいて小胞体膜を貫通することで、ジャンクトフィリンは両膜を架橋し、結合膜構造の形成に寄与すると考えられている。

サブタイプ  現在まで、JP-1~JP-4まで、4種類のサブタイプが同定されている。マウスでは、アミノ酸数は、JP-1が660、JP-2が696、JP-3が744、JP-4が628であり(Nishi 2003)、サブタイプ間の相同性は約40%程度と見積もられている(Takeshima 2000)。ウェスタンブロットから推測される分子量は72~95kDaであり、ジャンクトフィリン分子全体的に、アミノ酸数から推測される分子量よりも大きくなる傾向があるが、その原因は解明されていない(Nishi 2003)。MORN配列、およびカルボキシル末端側の膜貫通領域は、サブタイプ間の相同性がそれぞれ80%、50%と、相対的に高くなっている領域である。しかし、カルボキシル末端側にある膜貫通領域を除けば、MORN配列を含め、相同性の高い部分はアミノ酸番号400番台前半までの部分に集中しており(Nishi 2003)、C末側の膜貫通領域直前の約250個のアミノ酸配列の相同性は、約6%程度と相対的に低くなっている(Takeshima 2000)。マウスジャンクトフィリンの各サブタイプにおけるアミノ酸配列の具体的な相違については、Nishi et al 2003を参照されたい。

発現分布  ジャンクトフィリンは興奮性細胞において、各サブタイプの発現が見られる。JP-1は骨格筋特異的に発現が見られる。JP-2は心臓と骨格筋で発現レベルが特に高いほか、消化管や気管の平滑筋でも発現が確認され、筋細胞全般に分布すると推測される(Takeshima 2000)。一方、JP-3、JP-4の発現は脳に限局的であり、両者の発現部位には重複性が見られるが、このことは、後述のノックアウトマウアスの表現型において、JP-3、JP-4それぞれの単独ノックアウトマウスでは顕著な異常が現れないことと互いに矛盾しない。脳内におけるJP-3、JP-4の発現レベルには部位による違いが見られ、海馬のCA1~CA3領域や歯状回、小脳顆粒層などでは、JP-3、JP-4ともに高レベルの発現が見られる。 尚、JP-3、JP-4の脳内分布に関する詳細については、Nishi et al. (2003) を参考にされたい。

機能  ジャンクトフィリンの機能はノックアウトマウスの表現型を元に推測されている。そこで、各サブタイプのノックアウトマウス(ただし、JP-3とJP-4については、両者の二重欠損マウスについても)の表現型を記す。

JP-1欠損マウス  母乳を吸うことが出来ず、出生24時間以内に死亡する新生致死性を示す。JP-1欠損骨格筋では、電子顕微鏡観察により、結合膜構造 (triad junction) の形成不全が見とめられる。また張力測定では、JP-1欠損骨格筋はほぼ正常な最大張力を示すが、刺激頻度と発生張力とのプロットが正常なものより下降している。したがって、結合膜構造の形成不全により、L型カルシウムチャネルとRyR1との機能的カップリングに不備が生じて、興奮収縮連関の効率が低下しているものと考えられる。

JP-2欠損マウス  受精後9.5日には心臓拍動の減弱が確認され、その翌日頃には心停止に至る、胎生致死が見とめられる。JP-2欠損心筋細胞では、細胞表層膜と筋小胞体膜が近接した結合膜構造であるperipheral couplingの形成が極端に減少しており、このことに由来すると推測される心筋細胞内カルシウム濃度の一過的上昇(カルシウムトランジェント)の異常により、心不全となる。

JP-3欠損マウス、JP-4欠損マウス  JP-3欠損マウスでは、運動協調能の軽微な異常が見られるものの、両サブタイプの単独欠損マウスでは、顕著な異常は認められない。上述の両サブタイプの発現重複性と併せて考えると、両サブタイプ間の機能補完作用が示唆される。  両サブタイプを同時に欠損するJP-3&4二重欠損マウス(JP3&4 double-knockout mouse; 以下JP-DKOマウス)は、固型飼料を用いた通常飼育条件下では、離乳時期に死亡する。しかし、ペースト状の練り餌で飼育すると、この致死性がほぼ完全に回避される。また尻尾を持ち上げた際、野生型マウスでは下肢が開くのに対し、JP-DKOマウスは下肢を結ぶしぐさ、いわゆるfoot-clasping reflex と呼ばれる応答が出現する。この異常応答は、ハンチントン舞踏病モデルマウスにも観察される異常であるが、ヒトの遺伝性疾患であるハンチントン舞踏病類似疾患(HDL2)の原因として、JP3遺伝子へのtriplet repeatの伸長・挿入変異が見られることが報告されている。  JP-3、JP-4の発現分布から推測されるとおり、JP-DKOマウスにおける海馬および小脳に関連した機能異常が、現在までに報告されている。

海馬長期増強と記憶学習の異常  JP-DKOマウスは、Y迷路テスト、受動回避テストにおいて記憶学習の低下が見られる。これらに対応して、海馬CA3-CA1シナプスにおける長期増強(LTP)に顕著な異常が見られた。またシナプス電位応答において興奮性シナプス後電位に続いて現れる後過分極 (afterhyperpolarization; AHP)が、JP-DKO海馬CA1錐体細胞では欠落している。このAHPは小コンダクタンスカルシウム依存性カリウムチャネル(small-conductance Ca2+-dependent K+ channel; SK チャネル)を介するが、薬理学的な解析により、海馬CA1錐体細胞ではSKチャネルの活性化にはNMDA型グルタミン酸受容体とRyRの活性化が必要であることが示された。したがって、JP-DKO海馬CA1錐体細胞では、NMDA型グルタミン酸受容体-RyR-SKチャネル間の機能的共役が阻害されていることが推測される。さらに、JP-DKO海馬では、海馬LTPへの関与が示されているカルシウム-カルモジュリン依存性キナーゼII (CaMKII)のリン酸化に亢進が見られるが、並行して、CaMKIIの基質であるGluR1のリン酸化レベルの亢進も見られることから、JP-DKOマウス海馬におけるCaMKIIの活性化異常が示唆される。

小脳機能の異常  JP-DKOでは、回転棒テストおよび小脳依存性の瞬膜反射条件付け学習において、明確な阻害が見られる。また、小脳運動学習の基盤とされる平行線維-プルキンエ細胞シナプスにおける長期抑圧(long-term depression; 小脳LTD)において、野生型において小脳LTDを誘導する刺激(登上線維刺激とプルキンエ細胞の脱分極との組み合わせ刺激)により、JP-DKO小脳スライスではLTPが誘導される(小脳LTDのLTP化)。登上線維刺激によりプルキンエ細胞ではcomplex spikeと言う脱分極性の電位応答が見られるが、この電位応答の脱分極相の後に続く遅い過分極応答(slow afterhyperpolarization; sAHP)が、JP-DKOプルキンエ細胞では欠損している。引き続き薬理学的な解析により、sAHPはSKチャネルを介し、プルキンエ細胞で優先的に発現するRyR1の活性化に依存することが示されたが、JP-DKOプルキンエ細胞では、SKチャネル阻害薬であるapamin、およびRyR1を阻害するリアノジンもしくはdantroleneに感受性のあるsAHPが欠損している。さらに、登上線維刺激ではNMDA型グルタミン酸受容体が活性化されないため、RyR1を活性化するカルシウム流入はP/Q型カルシウムチャネルを介すると考えられることから、JP-DKOプルキンエ細胞では、P/Q型カルシウムチャネル-RyR1-SHチャネルの機能的共役が阻害されていることが示唆された。さらに野生型マウスの小脳スライス標本においても、apamin投与により小脳LTDのLTP化が見られることから、JP-DKO小脳におけるLTDのLTP化の少なくとも一つの原因として、P/Q型カルシウムチャネル-RyR1-SHチャネル間の機能的共役の阻害によるsAHPの欠損が示唆された。

 脳におけるRyRの機能については、RyR1やRyR2の遺伝子欠損マウスが、それぞれ出生致死、胎生致死を示すこと、さらに多くの神経細胞で複数のRyRサブタイプの発現が重複して見られることから、RyR遺伝子欠損動物を用いたアプローチでは解明が困難であった。しかし、JP-DKOマウスを用いた解析により、JP自身のチャネル間の機能的共役に関する機能的役割が明らかになっただけでなく、脳におけるRyRの機能についても知見が得られたことは特筆に値する。


関連項目

カルシウム 
リアノジン受容体 
IP3受容体