「セマフォリン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(同じ利用者による、間の1版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/read0019991/ 五嶋良郎]</font><br>
<font size="+1">[http://researchmap.jp/read0019991/ 五嶋良郎]</font><br>
''横浜市立大学大学院医学研究科分子薬理神経生物学''<br>
''横浜市立大学大学院医学研究科分子薬理神経生物学''<br>
DOI:<selfdoi /> 原稿受付日:2013年11月6日 原稿完成日:2013年12月26日<br>
DOI:<selfdoi /> 原稿受付日:2013年11月6日 原稿完成日:2013年12月26日 一部改訂:2021年6月14日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科 システム神経薬理学分野)<br>
</div>
</div>
英語名:semaphorin
英語名:semaphorin
38行目: 38行目:
[[image:semaphorin 1.jpg|thumb|300px|'''図1.セマフォリンファミリータンパク質と受容体の関係'''<br>[[TIM-2]]:[[T cell immunoglobulin and mucin-domain-containing 2]], [[CSPG]]: [[コンドロイチン硫酸プロテオグリカン]], [[HSPG]]: ヘパラン硫酸プロテオグリカン]]
[[image:semaphorin 1.jpg|thumb|300px|'''図1.セマフォリンファミリータンパク質と受容体の関係'''<br>[[TIM-2]]:[[T cell immunoglobulin and mucin-domain-containing 2]], [[CSPG]]: [[コンドロイチン硫酸プロテオグリカン]], [[HSPG]]: ヘパラン硫酸プロテオグリカン]]
==ファミリー分子==
==ファミリー分子==
 セマフォリンは構造の違いにより、8つのサブファミリー (セマフォリン1-7とV [ウイルス])に分類される(図1)<ref name=ref1 />。全てのセマフォリンの N末端側はセマドメインとなっており、C末端側の構造によって、[[分泌]]型、膜貫通型、 [[GPIアンカー]]型等の性質が付与される。この内、セマフォリン1aは[[線虫]]や[[ショウジョウバエ]]、セマフォリン2aはショウジョウバエ、[[wj:ハチ|ハチ]]等の[[wj:昆虫|昆虫]]に存在するセマフォリンである。
 セマフォリンは構造の違いにより、8つのサブファミリー (セマフォリン1-7とV [ウイルス])に分類される('''図1''')<ref name=ref1 />。全てのセマフォリンの N末端側はセマドメインとなっており、C末端側の構造によって、[[分泌]]型、膜貫通型、 [[GPIアンカー]]型等の性質が付与される。この内、セマフォリン1aは[[線虫]]や[[ショウジョウバエ]]、セマフォリン2aはショウジョウバエ、[[wj:ハチ|ハチ]]等の[[wj:昆虫|昆虫]]に存在するセマフォリンである。


== 発現パターンと細胞内分布 ==
== 発現パターンと細胞内分布 ==
139行目: 139行目:
 藤澤らは、[[アフリカツメガエル]]の幼生[[視蓋]]組織から標品を調整し、これを抗原として、2つの[[モノクローナル抗体]]、MAb5A MAbB2を単離した。この二つの抗体は、それぞれ視蓋の特定の網状層を染め分けた。これがのちにニューロピリンと後述するプレキシンが同定される契機となった<ref><pubmed>3297854</pubmed></ref><ref><pubmed>9078440</pubmed></ref>。後に、これらがセマフォリンの受容体分子であることが明らかにされた<ref><pubmed>9875845</pubmed></ref><ref><pubmed> 10520994</pubmed></ref>。
 藤澤らは、[[アフリカツメガエル]]の幼生[[視蓋]]組織から標品を調整し、これを抗原として、2つの[[モノクローナル抗体]]、MAb5A MAbB2を単離した。この二つの抗体は、それぞれ視蓋の特定の網状層を染め分けた。これがのちにニューロピリンと後述するプレキシンが同定される契機となった<ref><pubmed>3297854</pubmed></ref><ref><pubmed>9078440</pubmed></ref>。後に、これらがセマフォリンの受容体分子であることが明らかにされた<ref><pubmed>9875845</pubmed></ref><ref><pubmed> 10520994</pubmed></ref>。


 クラス3セマフォリンは分泌型であり、セマフォリン3A~3Gの7つが同定されている(表1)。このうちセマフォリン3EはプレキシンDを受容体とするが、それ以外は[[ニューロピリン1]]、あるいは[[ニューロピリン2]]を直接の受容体とする。ニューロピリン1、ニューロピリン2はプレキシンAと複合体を改正し、クラス3セマフォリンの機能的な受容体を形成する。またニューロピリン1およびニューロピリン2は[[血管内皮増殖因子]] ([[vascular endothelial growth factor]], [[VEGF]])165の受容体としても作動する<ref name=ref8 />。
 クラス3セマフォリンは分泌型であり、セマフォリン3A~3Gの7つが同定されている('''表1''')。このうちセマフォリン3EはプレキシンDを受容体とするが、それ以外は[[ニューロピリン1]]、あるいは[[ニューロピリン2]]を直接の受容体とする。ニューロピリン1、ニューロピリン2はプレキシンAと複合体を改正し、クラス3セマフォリンの機能的な受容体を形成する。またニューロピリン1およびニューロピリン2は[[血管内皮増殖因子]] ([[vascular endothelial growth factor]], [[VEGF]])165の受容体としても作動する<ref name=ref8 />。


=== プレキシン ===
=== プレキシン ===
147行目: 147行目:


====低分子量Gタンパク質====
====低分子量Gタンパク質====
: プレキシンは、現在まで知られている膜貫通型受容体のうち、[[低分子量Gタンパク質]]と直接結合できる唯一の受容体ファミリーである(図2)<ref name=ref8><pubmed>22325954</pubmed></ref> <ref name=ref9><pubmed>15297673</pubmed></ref>。結合できる低分子量Gタンパク質は主に[[R-Ras]]と[[Rnd1]]である。プレキシンの細胞内領域は[[R-Ras]]を不活化する[[GTPase activating protein]] ([[GAP]]) ドメインがRnd1に対する結合領域である[[Ras-binding domain]] ([[RBD]]) で二つに分割されたような一次構造を持つ。しかし、立体構造の解析から、通常は細胞の上で二量体を作って不活性な状態になっているプレキシン(センサー)は、同じく二量体を形成するセマフォリン(信号)がやってくると分離して別々にセマフォリンに結合する。こうして、プレキシンからセマフォリンへとパートナーが替わることにより細胞内に信号が伝わると推定されている(図3)<ref name=ref10><pubmed>20881961</pubmed></ref>。この際、タンパク質構造変化により、おそらくプレキシンの細胞内ドメイン同士の相互作用の変化をともなうと考えられるが、詳細はなお不明である。一方、細胞内領域の主要な機能は、GAPドメインとRBD領域がそれぞれひとかたまりとなった構造を持つため、リガンド依存的なRnd1の結合と、それに伴うGAP活性亢進によるR-Rasの不活化と考えられる(図2)。
: プレキシンは、現在まで知られている膜貫通型受容体のうち、[[低分子量Gタンパク質]]と直接結合できる唯一の受容体ファミリーである('''図2''')<ref name=ref8><pubmed>22325954</pubmed></ref> <ref name=ref9><pubmed>15297673</pubmed></ref>。結合できる低分子量Gタンパク質は主に[[R-Ras]]と[[Rnd1]]である。プレキシンの細胞内領域は[[R-Ras]]を不活化する[[GTPase activating protein]] ([[GAP]]) ドメインがRnd1に対する結合領域である[[Ras-binding domain]] ([[RBD]]) で二つに分割されたような一次構造を持つ。しかし、立体構造の解析から、通常は細胞の上で二量体を作って不活性な状態になっているプレキシン(センサー)は、同じく二量体を形成するセマフォリン(信号)がやってくると分離して別々にセマフォリンに結合する。こうして、プレキシンからセマフォリンへとパートナーが替わることにより細胞内に信号が伝わると推定されている('''図3''')<ref name=ref10><pubmed>20881961</pubmed></ref>。この際、タンパク質構造変化により、おそらくプレキシンの細胞内ドメイン同士の相互作用の変化をともなうと考えられるが、詳細はなお不明である。一方、細胞内領域の主要な機能は、GAPドメインとRBD領域がそれぞれひとかたまりとなった構造を持つため、リガンド依存的なRnd1の結合と、それに伴うGAP活性亢進によるR-Rasの不活化と考えられる('''図2''')。


: R-Rasの不活化により、[[ホスファチジルイノシトール3キナーゼ]] ([[PI3K]]) 活性が低下し、結果として[[Akt]]-[[GSK3β]]系の活性化をもたらし、インテグリンを介した[[細胞接着]]が低下すると考えられている。
: R-Rasの不活化により、[[ホスファチジルイノシトール3キナーゼ]] ([[PI3K]]) 活性が低下し、結果として[[Akt]]-[[GSK3β]]系の活性化をもたらし、インテグリンを介した[[細胞接着]]が低下すると考えられている。
158行目: 158行目:
: 一方、プレキシンBの場合は、C末端に[[PDZドメイン]]結合配列があり、これを介して[[PDZ-RhoGEF]]や[[LARG]]等のRhoGEFが結合する。受容体が刺激されるとRhoGEFが活性化され、低分子量Gタンパク質[[Rho]]と下流のRhoキナーゼ活性が亢進する。また、プレキシンBは[[Rac]]とも相互作用することが知られている。
: 一方、プレキシンBの場合は、C末端に[[PDZドメイン]]結合配列があり、これを介して[[PDZ-RhoGEF]]や[[LARG]]等のRhoGEFが結合する。受容体が刺激されるとRhoGEFが活性化され、低分子量Gタンパク質[[Rho]]と下流のRhoキナーゼ活性が亢進する。また、プレキシンBは[[Rac]]とも相互作用することが知られている。


: これらをまとめると、プレキシンの基本的な機能は、Rnd1、R-Ras、Rac、Rhoの活性調節であり、これらの低分子量Gタンパク質を介して[[細胞骨格]]の再構成と細胞接着の制御を行っていると考えられる(図2)。
: これらをまとめると、プレキシンの基本的な機能は、Rnd1、R-Ras、Rac、Rhoの活性調節であり、これらの低分子量Gタンパク質を介して[[細胞骨格]]の再構成と細胞接着の制御を行っていると考えられる('''図2''')。


====リン酸化酵素====
====リン酸化酵素====
: プレキシンAは低分子量Gタンパク質を介した情報伝達以外に、リン酸化酵素を介した情報伝達も行う。
: プレキシンAは低分子量Gタンパク質を介した情報伝達以外に、リン酸化酵素を介した情報伝達も行う。


: プレキシンAは[[Src]]ファミリーチロシンキナーゼの一種である[[Fyn]]と相互作用する。セマフォリン3Aが結合するとFynによる[[チロシンリン酸化]]を介して[[Cdk5]]が活性化する。Cdk5は[[コラプシン反応媒介タンパク質]]([[collapsin response mediator protein]], [[CRMP]]) をリン酸化する(図2)。一旦Cdk5によりリン酸化されると([[プライミング]])、GSK3βによりCRMPが認識されるようになり、追加的なリン酸化が行われる。これらのリン酸化を受けたCRMPと細胞内の他の様々なタンパク質との相互作用が変化し、[[微小管]]を含む[[細胞骨格]]の再構成に関与する<ref name=ref11><pubmed>22351471</pubmed></ref>。また興味深いことに、[[アルツハイマー型認知症]]患者脳組織における[[神経原線維]]には、高度にリン酸化修飾を受けた[[CRMP2]]の集積が認められ、病態との関連が注目されている。
: プレキシンAは[[Src]]ファミリーチロシンキナーゼの一種である[[Fyn]]と相互作用する。セマフォリン3Aが結合するとFynによる[[チロシンリン酸化]]を介して[[Cdk5]]が活性化する。Cdk5は[[コラプシン反応媒介タンパク質]]([[collapsin response mediator protein]], [[CRMP]]) をリン酸化する('''図2''')。一旦Cdk5によりリン酸化されると([[プライミング]])、GSK3βによりCRMPが認識されるようになり、追加的なリン酸化が行われる。これらのリン酸化を受けたCRMPと細胞内の他の様々なタンパク質との相互作用が変化し、[[微小管]]を含む[[細胞骨格]]の再構成に関与する<ref name=ref11><pubmed>22351471</pubmed></ref>。また興味深いことに、[[アルツハイマー型認知症]]患者脳組織における[[神経原線維]]には、高度にリン酸化修飾を受けた[[CRMP2]]の集積が認められ、病態との関連が注目されている。


: GSK3βの基質には、CRMPのようなprimed substrateと 予めのリン酸化修飾を必要としないunprimed substrateが存在する。セマフォリン3Aシグナルの下流にはunprimed substrateである[[Axin-1]]が関与し、GSK3β/Axin-1/[[β-カテニン]]複合体形成を経て[[エンドサイトーシス]]を誘起する<ref name=ref11 />。また、プレキシンAは[[wj:酸化還元酵素|酸化還元酵素]]である[[Molecules Interacting with CasL]] ([[MICAL]]) とも相互作用し、[[アクチン]]の重合を調節する。
: GSK3βの基質には、CRMPのようなprimed substrateと 予めのリン酸化修飾を必要としないunprimed substrateが存在する。セマフォリン3Aシグナルの下流にはunprimed substrateである[[Axin-1]]が関与し、GSK3β/Axin-1/[[β-カテニン]]複合体形成を経て[[エンドサイトーシス]]を誘起する<ref name=ref11 />。また、プレキシンAは[[wj:酸化還元酵素|酸化還元酵素]]である[[Molecules Interacting with CasL]] ([[MICAL]]) とも相互作用し、[[アクチン]]の重合を調節する。