「セロトニン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
(3人の利用者による、間の8版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">[http://researchmap.jp/kkatsutky 小林 克典]</font><br>
''日本医科大学 薬理学講座''<br>
DOI:<selfdoi /> 原稿受付日:2012年2月15日 原稿完成日:2012年2月15日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
{{chembox
{{chembox
| verifiedrevid = 464389317
| verifiedrevid = 464389317
66行目: 73行目:
}}
}}
}}
}}
英語名:serotonin、5-hydroxytryptamine 英略語:5-HT  
英語名:serotonin、5-hydroxytryptamine 独:Serotonin、仏:sérotonine 英略語:5-HT  
 
 [[生理活性アミン]]の一種で、[[中枢神経系]]の[[伝達物質]]として働く。脳機能の調節において重要な役割を果たすと考えられているが、生体内の大部分(~95%)のセロトニンは末梢に存在し<ref><pubmed> 17241888 </pubmed></ref> <ref name="ref2"><pubmed> 18471139 </pubmed></ref>、[[wikipedia:JA:血管収縮|血管収縮]]、[[wikipedia:JA:腸管蠕動運動|腸管蠕動運動]]、[[wikipedia:JA:血小板|血小板]]凝縮などの調節因子として末梢でも多様な作用を持つ。生体内のセロトニンは[[wikipedia:JA:必須アミノ酸|必須アミノ酸]]の[[wikipedia:JA:トリプトファン|トリプトファン]]から合成され、[[小胞モノアミントランスポーター]]によって[[wikipedia:JA:細胞|細胞]]内の[[小胞]]に取り込まれる。[[開口放出]]によって細胞外に放出されたセロトニンは標的細胞の[[受容体]]を活性化してその効果を発揮し、[[セロトニントランスポーター]]によって細胞内に取り込まれる。


{{box|text=
 [[生理活性アミン]]の一種で、[[中枢神経系]]の[[伝達物質]]として働く。脳機能の調節において重要な役割を果たすと考えられているが、生体内の大部分(~95%)のセロトニンは末梢に存在し<ref><pubmed> 17241888 </pubmed></ref> <ref name="ref2"><pubmed> 18471139 </pubmed></ref>、[[wikipedia:vasoconstriction|血管収縮]]、[[wikipedia:JA:蠕動|腸管蠕動運動]]、[[wikipedia:JA:血小板|血小板]]凝縮などの調節因子として末梢でも多様な作用を持つ。生体内のセロトニンは[[wikipedia:JA:必須アミノ酸|必須アミノ酸]]の[[wikipedia:JA:トリプトファン|トリプトファン]]から合成され、[[小胞モノアミントランスポーター]]によって[[wikipedia:JA:細胞|細胞]]内の[[小胞]]に取り込まれる。[[開口放出]]によって細胞外に放出されたセロトニンは標的細胞の[[受容体]]を活性化してその効果を発揮し、[[セロトニントランスポーター]]によって細胞内に取り込まれる。
}}


== 生合成  ==
== 生合成  ==


 生体内のセロトニンは、トリプトファンから[[トリプトファン水酸化酵素]](tryptophan hydoxylase、TPH)、[[芳香族L-アミノ酸脱炭酸酵素]](aromatic L-amino acid decarboxylase、AAAD)による二段階の酵素反応によって合成される。[[Image:5ht figure.jpg|frame|right|セロトニンの生合成と代謝]] AAADは[[ドーパミン]]の生合成経路でも機能する。TPHはセロトニン合成の[[wikipedia:JA:律速酵素|律速酵素]]で、TPH1とTPH2の二種類のアイソフォームが存在する。TPH1は[[腸クロム親和性細胞]]などの主に末梢のセロトニン産生細胞に、TPH2は主に中枢の[[セロトニン神経系]]の細胞に発現する。TPH1欠損マウスでは血中のセロトニン濃度が約95%低下し、TPH2欠損マウスでは中枢神経系のセロトニン含量が約95%低下し、末梢と中枢におけるそれぞれの酵素の重要性を示している。しかし、TPH1とTPH2の両方を欠損するマウスでも血中、中枢ともに数%のセロトニンは残存する<ref name="ref3"><pubmed> 18923670 </pubmed></ref>。TPHは[[テトラヒドロビオプテリン]](Tetrahydrobiopterin、BH4)を補因子とし、BH4の欠乏はセロトニンの欠乏を伴う。BH4はドーパミン生合成に必要な[[チロシン水酸化酵素]]や[[一酸化窒素合成酵素]]の[[wikipedia:JA:補因子|補因子]]としても働き、セロトニンやドーパミンの放出に影響を及ぼすことも示されている<ref><pubmed> 21867484 </pubmed></ref>。  
 生体内のセロトニンは、トリプトファンから[[トリプトファン水酸化酵素]](tryptophan hydoxylase、TPH)、[[芳香族L-アミノ酸脱炭酸酵素]](aromatic L-amino acid decarboxylase、AADC)による二段階の酵素反応によって合成される。[[Image:5ht figure.jpg|frame|right|セロトニンの生合成と代謝]] AADCは[[ドーパミン]]の生合成経路でも機能する。TPHはセロトニン合成の[[wikipedia:JA:律速酵素|律速酵素]]で、TPH1とTPH2の二種類のアイソフォームが存在する。TPH1は[[腸クロム親和性細胞]]などの主に末梢のセロトニン産生細胞に、TPH2は主に中枢の[[セロトニン神経系]]の細胞に発現する。TPH1欠損マウスでは血中のセロトニン濃度が約95%低下し、TPH2欠損マウスでは中枢神経系のセロトニン含量が約95%低下し、末梢と中枢におけるそれぞれの酵素の重要性を示している。しかし、TPH1とTPH2の両方を欠損するマウスでも血中、中枢ともに数%のセロトニンは残存する<ref name="ref3"><pubmed> 18923670 </pubmed></ref>。TPHは[[テトラヒドロビオプテリン]](Tetrahydrobiopterin、BH4)を補因子とし、BH4の欠乏はセロトニンの欠乏を伴う。BH4はドーパミン生合成に必要な[[チロシン水酸化酵素]]や[[一酸化窒素合成酵素]]の[[wikipedia:JA:補因子|補因子]]としても働き、セロトニンやドーパミンの放出に影響を及ぼすことも示されている<ref><pubmed> 21867484 </pubmed></ref>。  
 


== 代謝  ==
== 代謝  ==


 セロトニンは[[モノアミン酸化酵素]](monoamine oxidase、MAO)、さらに[[アルデヒド脱水素酵素]]によって代謝されて[[5-ヒドロキシインドール酢酸]](5-hydroxyindoleacetic acid、5-HIAA)を生じる。5-HIAAの[[脳脊髄液]]中濃度が中枢セロトニン含量の間接的な指標としてしばしば用いられるが、セロトニン代謝が変化した場合、セロトニンと5-HIAA濃度は逆方向に変化するため、5-HIAA濃度はセロトニン濃度を必ずしも反映しない。MAOにはMAO<sub>A</sub>とMAO<sub>B</sub>の[[wikipedia:JA:アイソザイム|アイソザイム]]が存在し、セロトニンは主にMAO<sub>A</sub>によって代謝される<ref name="ref5"><pubmed> 10202537 </pubmed></ref>。大部分のMAO<sub>A</sub>は[[wikipedia:JA:ミトコンドリア|ミトコンドリア]]の外膜に局在しており<ref><pubmed> 8330200 </pubmed></ref>、[[グリア細胞]]にも発現が見られる<ref name="ref7"><pubmed> 3399053 </pubmed></ref>。[[wikipedia:JA:基質特異性|基質特異性]]から予想される局在とは異なり、セロトニン神経には主にMAO<sub>B</sub>が発現しておりMAO<sub>A</sub>の発現は非常に少ない<ref name="ref5" /> <ref name="ref7" />。しかし、MAO<sub>A</sub>欠損マウスでは脳のセロトニン含量が増え<ref><pubmed> 7792602 </pubmed></ref>、MAO<sub>B</sub>欠損[[マウス]]ではそのような変化は生じないため<ref><pubmed> 9326944 </pubmed></ref>、MAO<sub>A</sub>が脳内のセロトニン代謝に重要であることは間違いない。  
 セロトニンは[[モノアミン酸化酵素]](monoamine oxidase、MAO)、さらに[[アルデヒド脱水素酵素]]によって代謝されて[[5-ヒドロキシインドール酢酸]](5-hydroxyindoleacetic acid、5-HIAA)を生じる。5-HIAAの[[脳脊髄液]]中濃度が中枢セロトニン含量の間接的な指標としてしばしば用いられるが、セロトニン代謝が変化した場合、セロトニンと5-HIAA濃度は逆方向に変化するため、5-HIAA濃度はセロトニン濃度を必ずしも反映しない。MAOにはMAO<sub>A</sub>とMAO<sub>B</sub>の[[wikipedia:JA:アイソザイム|アイソザイム]]が存在し、セロトニンは主にMAO<sub>A</sub>によって代謝される<ref name="ref5"><pubmed> 10202537 </pubmed></ref>。大部分のMAO<sub>A</sub>は[[wikipedia:JA:ミトコンドリア|ミトコンドリア]]の外膜に局在しており<ref><pubmed> 8330200 </pubmed></ref>、[[グリア細胞]]にも発現が見られる<ref name="ref7"><pubmed> 3399053 </pubmed></ref>。[[wikipedia:JA:基質特異性|基質特異性]]から予想される局在とは異なり、セロトニン神経には主にMAO<sub>B</sub>が発現しておりMAO<sub>A</sub>の発現は非常に少ない<ref name="ref5" /> <ref name="ref7" />。しかし、MAO<sub>A</sub>欠損マウスでは脳のセロトニン含量が増え<ref><pubmed> 7792602 </pubmed></ref>、MAO<sub>B</sub>欠損[[マウス]]ではそのような変化は生じないため<ref><pubmed> 9326944 </pubmed></ref>、MAO<sub>A</sub>が脳内のセロトニン代謝に重要であることは間違いない。  


== セロトニントランスポーター  ==
== セロトニントランスポーター  ==


 イオンの[[電気化学的勾配]]によって駆動される12回膜貫通型の細胞膜上のトランスポーターで、セロトニン神経や血小板に発現している。血小板にはセロトニン産生酵素はほとんど無く、血小板内のセロトニンはトランスポーターによって血中から取り込まれたものである<ref name="ref2" />。細胞外のNa<sup>+</sup>、Cl<sup>-</sup>と共にセロトニンが細胞内に輸送され、細胞内のK<sup>+</sup>が逆向きに輸送される。K<sup>+</sup>は輸送に必須ではないが、輸送速度を上昇させる<ref><pubmed> 489585 </pubmed></ref>。セロトニントランスポーターを阻害すると細胞外のセロトニンの基底濃度が上昇し、さらに一時的にセロトニン濃度が上昇した際にその回復が遅くなるため、標的細胞に対するセロトニンの作用が増強される<ref><pubmed> 12151556 </pubmed></ref> <ref><pubmed> 14530210 </pubmed></ref>。[[抗うつ薬]]などの[[向精神薬]]にはセロトニントランスポーターの阻害作用を持つものが多い。  
 イオンの[[電気化学的勾配]]によって駆動される12回膜貫通型の[[細胞膜]]上のトランスポーターで、セロトニン神経や血小板に発現している。血小板にはセロトニン産生酵素はほとんど無く、血小板内のセロトニンはトランスポーターによって血中から取り込まれたものである<ref name="ref2" />。細胞外のNa<sup>+</sup>、Cl<sup>-</sup>と共にセロトニンが細胞内に輸送され、細胞内のK<sup>+</sup>が逆向きに輸送される。K<sup>+</sup>は輸送に必須ではないが、輸送速度を上昇させる<ref><pubmed> 489585 </pubmed></ref>。セロトニントランスポーターを阻害すると細胞外のセロトニンの基底濃度が上昇し、さらに一時的にセロトニン濃度が上昇した際にその回復が遅くなるため、標的細胞に対するセロトニンの作用が増強される<ref><pubmed> 12151556 </pubmed></ref> <ref><pubmed> 14530210 </pubmed></ref>。[[抗うつ薬]]などの[[向精神薬]]にはセロトニントランスポーターの阻害作用を持つものが多い。
 


== セロトニン受容体 ==
== 受容体 ==


 5-HT<sub>1</sub>から5-HT<sub>7</sub>の7種類のサブファミリーからなり、14個のサブタイプが存在する<ref name="ref13"><pubmed> 10462127 </pubmed></ref> <ref name="ref14"><pubmed> 18615128 </pubmed></ref> <ref name="ref15"><pubmed> 18676031 </pubmed></ref> <ref name="ref16"><pubmed> 20945968 </pubmed></ref>。イオンチャネル型の5-HT<sub>3</sub>を除いて他は全て[[GTP結合蛋白質]]に共役する受容体であり、遅い膜電位変化や[[シナプス伝達]]の修飾に関与する。脳には全ての受容体が発現している。  
 5-HT<sub>1</sub>から5-HT<sub>7</sub>の7種類のサブファミリーからなり、14個のサブタイプが存在する<ref name="ref13"><pubmed> 10462127 </pubmed></ref> <ref name="ref14"><pubmed> 18615128 </pubmed></ref> <ref name="ref15"><pubmed> 18676031 </pubmed></ref> <ref name="ref16"><pubmed> 20945968 </pubmed></ref>。イオンチャネル型の5-HT<sub>3</sub>を除いて他は全て[[GTP結合蛋白質]]に共役する受容体であり、[[遅いシナプス後電位|遅い膜電位変化]]や[[シナプス伝達]]の修飾に関与する。脳には全ての受容体が発現している。  


==== 5-HT<sub>1</sub>受容体  ====
==== 5-HT<sub>1</sub>受容体  ====
125行目: 130行目:


<references />
<references />
(執筆者:小林克典、担当編集委員:林康紀)

案内メニュー