「トポグラフィックマッピング」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
21行目: 21行目:
 その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。
 その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。


 上記のアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現している分子を精製した。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることからGPI結合性の膜結合タンパク質であることがわかっていた。その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しいチロシンキナーゼ分子(後にEphとよばれる)が同定され、それについての研究が様々なグループで行われていた。中でもレジェネロンのGeorge Yancopoulosのグループはこのキナーゼ(Ephにあたる)のファミリーの同定とそのリガンド(ephrinにあたる)の解明を行っていた。Phil Leaderの弟子にあたるJohn Flanaganもハーバードに自分のラボを持った頃で、彼のプロジェクトの一つとしてMek4(EphA3にあたる)とよばれるキナーゼ対するリガンドの発現クローニングを行っていた。それでとれてきた分子がELF-1(ephrinA2にあたる)で1994年にこの分子は膜結合型のタンパク質であることがわかっていた。その時にMek4とELF-1が網膜と視蓋で濃度勾配を呈して発現しており、しかもその勾配が逆であることに気がついた彼のグループは1995年にこのEphA3-ephrinA2がBonhoefferのグループが解析を行ってきたSperryのchemoaffnity theoryに関与するものであるという論文を発表した。その論文はDrescherらのRAGSがephrinAであるという論文と同時に発表されている。その後、様々なグループ(Rudiger KleinやDennis O'learyら)も参画しニワトリだけでなくマウスでもこのEph-ephrinを介したメカニズムが視覚系におけるトポグラフィックマッピングに働いていることが証明された。
 上記のアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現している分子を精製した。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることからGPI結合性の膜結合タンパク質であることがわかっていた。その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しいチロシンキナーゼ分子(後にEphとよばれる)が同定され、それについての研究が様々なグループで行われていた。中でもレジェネロンのGeorge Yancopoulosのグループ(Nick Galeら)はこのキナーゼ(Ephにあたる)のファミリーの同定とそのリガンド(ephrinにあたる)の解明を発現クローニングの手法を用いて精力的に行っていた。一方Phil Leaderの弟子にあたるJohn Flanaganもハーバードに自分のラボを持った頃で、彼のプロジェクトの一つとしてMek4(EphA3にあたる)とよばれるキナーゼ対するリガンドの発現クローニングを行っていた。それでとれてきた分子がELF-1(ephrinA2にあたる)で1994年にこの分子は膜結合型のタンパク質であることがわかっていた。その時にMek4とELF-1が網膜と視蓋で濃度勾配を呈して発現しており、しかもその勾配が逆であることに気がついた彼のグループは1995年にこのEphA3-ephrinA2がBonhoefferのグループが解析を行ってきたSperryのchemoaffnity theoryに関与するものであるという論文を発表した。その論文はDrescherらのRAGSがephrinAのグループに属する分子(ephrinA5にあたる)であるという論文と同時に発表されている。その後、様々なグループ(Rudiger KleinやDennis O'learyら)も参画しニワトリだけでなくマウスでもこのEph-ephrinを介したメカニズムが視覚系におけるトポグラフィックマッピングに働いていることが証明された。詳しくはEph-ephrinの項を参照されたい。


図3 ストライプアッセイによる視蓋の前側と後側で網膜神経節細胞の軸索に対する影響の違い
図3 ストライプアッセイによる視蓋の前側と後側で網膜神経節細胞の軸索に対する影響の違い
35行目: 35行目:
 こういった過程に関わる分子の濃度勾配に関してはカウンターバランスを示す2つの濃度勾配が必要という考え方と、1つの濃度勾配がプッシュとプルと両方やれるという考え方とある。その他、もう一つの可能性として、軸索同士が競合するという可能性もあり、最近の知見では軸索同士の競合も視覚系におけるトポグラフィックマッピングに必要であるとされている<ref><pubmed>22065784</pubmed></ref>。    
 こういった過程に関わる分子の濃度勾配に関してはカウンターバランスを示す2つの濃度勾配が必要という考え方と、1つの濃度勾配がプッシュとプルと両方やれるという考え方とある。その他、もう一つの可能性として、軸索同士が競合するという可能性もあり、最近の知見では軸索同士の競合も視覚系におけるトポグラフィックマッピングに必要であるとされている<ref><pubmed>22065784</pubmed></ref>。    


 この他にも、外側膝状体と大脳皮質の視覚野でもトポグラフィックマップは形成されているがその分子メカニズムは視蓋/上丘ほどは明らかにされていない。
 この他にも、外側膝状体と大脳皮質の視覚野でもトポグラフィックマップは形成されているがその分子メカニズムは視蓋/上丘ほどは明らかにされていない。一番よく研究されているのはこれらの視覚中枢において右目と左目から投射を受けている部位が交互にストライプ状に配置されている。大脳皮質においてはこのストライプ状にならんだカラムをを優位視覚性円柱ocular dominance columnという。猫で片方の眼を視覚の発達段階に閉じることでこのストライプのサイズに変化を与えることができるのでこれには神経活動依存的なメカニズムが関与していることが知られている。


== 臨界期==
 トポグラフィックマップの形成後はそれを変えることは難しいが、形成の前に脳の領域ごとに[[可塑性]]が持続する時期があり、それを[[臨界期]]と呼ぶ。この時期は神経活動依存的な修飾が可能な時期であり、この時期内での神経活動の変化は脳内でのマップのパターンを変えることができる。臨界期における神経活動の変化はこの優位視覚性円柱(すなわちトポグラフィカルマップ)のパターンを変える(例えば右目と左目のカラムでサイズが変わる)。詳しくは臨界期の項を参照されたい。
 トポグラフィックマップの形成後はそれを変えることは難しいが、形成の前に脳の領域ごとに[[可塑性]]が持続する時期があり、それを[[臨界期]]と呼ぶ。この時期は神経活動依存的な修飾が可能な時期であり、この時期内での神経活動の変化は脳内でのマップのパターンを変えることができる。
 
==視覚優位性円柱 ==
 
 視覚中枢において片方の眼ともう片方の眼からの刺激を受ける領域が交互に存在し、ストライプ状に配置されている。このストライプをocular dominance columnという。通常は片方の眼ともう片方の眼のそれぞれのカラムは同じ大きさである。このストライプの形成にも神経活動が必要であり、臨界期における神経活動の変化はこのストライプ(すなわちトポグラフィカルマップ)のパターンを変える(例えば右目と左目のカラムでサイズが変わる)。




131

回編集