「ドリフト拡散モデル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
20行目: 20行目:


ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff (1978)  
ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff (1978)  
Ratcliff, R. (1978). A theory of memory retrieval. Psychological review, 85(2), 59.
<ref><b>R Ratcliff</b><br>A theory of memory retrieval.<br><i>Psychological Review</i> 1978, 85(2);59–108</ref>が提案し,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている<ref><pubmed> 26952739 </pubmed></ref>。
<ref><b>R Ratcliff</b><br>A theory of memory retrieval.<br><i>Psychological Review</i> 1978, 85(2);59–108</ref>が提案し,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている<ref><pubmed> 26952739 </pubmed></ref>。


40行目: 39行目:
<math>\Delta x = v \Delta t + \sigma \epsilon_i \sqrt{\Delta t} </math>
<math>\Delta x = v \Delta t + \sigma \epsilon_i \sqrt{\Delta t} </math>


この式で<math>x</math>を更新していくことによりエビデンスの蓄積過程をシミュレートできる。図Xはこの計算により得られたものである。
この式で<math>x</math>を更新していくことによりエビデンスの蓄積過程をシミュレートできる。図2はこの計算により得られたものである。


 生体が注意深く反応するほどパラメータ<math>a</math>は大きくなり,境界の間は広がると考えられる。逆に,素早く反応することが求められる場合は<math>a</math>は小さくなる。開始点パラメータ<math>z</math>は刺激に関する事前の期待を表すと考えられる。例えば,反応Aを起こすべき刺激が期待されるときは,このパラメータは大きい (<math>a</math>に近い) 値をとる。
 生体が注意深く反応するほどパラメータ<math>a</math>は大きくなり,境界の間は広がると考えられる。逆に,素早く反応することが求められる場合は<math>a</math>は小さくなる。開始点パラメータ<math>z</math>は刺激に関する事前の期待を表すと考えられる。例えば,反応Aを起こすべき刺激が期待されるときは,このパラメータは大きい (<math>a</math>に近い) 値をとる。
46行目: 45行目:
 標準的なドリフト拡散モデル (Ratcliff, 1978) では,開始点とドリフト率,および非決定時間は,試行間で変動すると仮定される。ドリフト率の試行間変動は,刺激に対する注意の変化などに対応すると考えられ,正規分布に従って変動するとされる。この変動を仮定することで,正反応より誤反応の方が反応時間が長くなるということが説明可能となる。これは,ドリフト率が小さくなる試行において,誤反応が起こりやすくなり,かつ反応時間が長くなるためである。開始点の試行間変動は一様分布に従うと仮定され,ある特定の刺激がどの程度呈示されやすいかについての期待が試行間で変動することを表現する。この変動により,誤反応が起こる試行で反応時間が短くなることが説明できる。なぜなら,開始点が誤反応側の境界に寄っているときに,反応が早くなり,かつ誤反応が起きやすいためである。
 標準的なドリフト拡散モデル (Ratcliff, 1978) では,開始点とドリフト率,および非決定時間は,試行間で変動すると仮定される。ドリフト率の試行間変動は,刺激に対する注意の変化などに対応すると考えられ,正規分布に従って変動するとされる。この変動を仮定することで,正反応より誤反応の方が反応時間が長くなるということが説明可能となる。これは,ドリフト率が小さくなる試行において,誤反応が起こりやすくなり,かつ反応時間が長くなるためである。開始点の試行間変動は一様分布に従うと仮定され,ある特定の刺激がどの程度呈示されやすいかについての期待が試行間で変動することを表現する。この変動により,誤反応が起こる試行で反応時間が短くなることが説明できる。なぜなら,開始点が誤反応側の境界に寄っているときに,反応が早くなり,かつ誤反応が起きやすいためである。


 以上のように,標準的なドリフト拡散モデルのパラメータは,開始点(z),開始点の試行間変動幅 (<math>s_{z}</math>),ドリフト率の平均(<math>m_v</math>),ドリフト率の標準偏差(<math>\eta</math>), 境界(<math>a</math>),非決定時間の平均(<math>T_{er}</math>),非決定時間の試行間変動(<math>s_{t}</math>)の7つとなる。
 以上のように,標準的なドリフト拡散モデルのパラメータは,開始点(z),開始点の試行間変動幅 (<math>s_{z}</math>),ドリフト率の平均(<math>m_v</math>),ドリフト率の標準偏差(<math>\eta</math>), 境界(<math>a</math>),非決定時間の平均(<math>T_{er}</math>),非決定時間の試行間変動(<math>s_{t}</math>)の7つとなる。


==反応時間分布および選択確率とモデルパラメータの関係==
==反応時間分布および選択確率とモデルパラメータの関係==
二つの選択に関する上記のモデルにおいて,各パラメータを固定した場合 (試行間変動は仮定しない場合),それぞれの選択肢を選ぶ確率,およびその反応時間の分布は次のように解析的に導出される (Ratcliff, 1978)。下側の境界 (0) に到達し,反応Bが起こる確率は,
二つの選択に関する上記のモデルにおいて,各パラメータを固定した場合 (試行間変動は仮定しない場合),それぞれの選択肢を選ぶ確率,およびその反応時間の分布は次のように解析的に導出される (Ratcliff, 1978)。下側の境界 (0) に到達し,反応Bが起こる確率は,


62行目: 62行目:


==モデルフィッティング==
==モデルフィッティング==
実験で収集された反応データに対して,モデルフィッティングをする方法として,<math>\chi^{2}</math>最小化,最尤法,重み付き最小二乗法,ベイズ推定等がある。(Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481) モデルフィッティング用のソフトウェアとしては,以下がある。
実験で収集された反応データに対して,モデルフィッティングをする方法として,<math>\chi^{2}</math>最小化,最尤法,重み付き最小二乗法,ベイズ推定等がある<ref><pubmed> 12412886</pubmed></ref>。モデルフィッティング用のソフトウェアとしては,以下がある。


* Fast-dm: Voss & Voss (2007)が開発したWindowsで動作するソフト(最尤推定,Kolmogorov-Smirnov,<math>\chi^{2}</math>最小化などの方法が可能)
* Fast-dm: Voss & Voss (2007)が開発したWindowsで動作するソフト(最尤推定,Kolmogorov-Smirnov,<math>\chi^{2}</math>最小化などの方法が可能)
135

回編集