「ドリフト拡散モデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
 
(同じ利用者による、間の3版が非表示)
32行目: 32行目:


==モデルの定式化==
==モデルの定式化==
 
[[Image:DDM_animation.gif|thumb|400px|<b>図2. ドリフト拡散モデルのエビデンス蓄積過程と、反応時間分布</b><br>ドリフト率や開始点、境界は試行間で固定している (<math>v = 1, z = 0.5, a = 1</math>)]]
[[Image:DDM_animation.gif|thumb|300px|<b>図2.ドリフト拡散モデルのエビデンス蓄積過程と、反応時間分布</b><br>ドリフト率や開始点、境界は試行間で固定している (<math>v = 1, z = 0.5, a = 1</math>)。動画表示されない時は[[ファイル:DDM_animation.gif|こちら]]から。]]


 ここでは、反応Aと反応Bのいずれかの反応が求められる[[強制二肢選択課題]]を想定し、基本的なドリフト拡散モデルを考える。上側の境界を<math>a</math>、下側の境界を0, 開始点を<math>z</math>とする。上側の境界にエビデンスを表す変数<math>x</math>が到達した場合、そのタイミングで反応Aが起こり、下側の境界である0に到達したらそのタイミングで反応Bが起こると仮定する。
 ここでは、反応Aと反応Bのいずれかの反応が求められる[[強制二肢選択課題]]を想定し、基本的なドリフト拡散モデルを考える。上側の境界を<math>a</math>、下側の境界を0, 開始点を<math>z</math>とする。上側の境界にエビデンスを表す変数<math>x</math>が到達した場合、そのタイミングで反応Aが起こり、下側の境界である0に到達したらそのタイミングで反応Bが起こると仮定する。
70行目: 69行目:
:<math>G(t, v, a, z) = \frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin \left(\frac{\pi z k}{a}\right) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math>
:<math>G(t, v, a, z) = \frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin \left(\frac{\pi z k}{a}\right) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math>


で与えられる。境界<math>a</math>に到達し反応Aが起こり、かつその反応時間が<math>t</math>となる確率密度は、上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。'''図2'''の上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムもサンプルが増えるにつれてこの分布に近づいていくことがわかる。
で与えられる。境界<math>a</math>に到達し反応Aが起こり、かつその反応時間が<math>t</math>となる確率密度は、上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。'''図2'''の上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムも試行数が増えるにつれてこの分布に近づいていくことがわかる。


==モデルフィッティング==
==モデルフィッティング==
109行目: 108行目:
 主に[[サル]]を被験体とした単一細胞レベルでの神経活動記録により、エビデンスの蓄積過程に対応する神経活動が検討されてきた。例えば視線でターゲットを選択することで反応する意思決定課題においては、ターゲットの方向へのサッケード時に選択的に活動する[[LIP野]] ([[lateral intraparietal cortex]]) の細胞は刺激の呈示とともに徐々に活動が増加し、その発火率 (単位時間あたりの活動電位の数) がある閾値に到達したときに[[サッケード]]反応が起こるということが観測されている。その振る舞いはドリフト拡散モデルをはじめとする逐次サンプリングモデルと対応付けられて議論されている<ref><pubmed>8570606</pubmed></ref>。
 主に[[サル]]を被験体とした単一細胞レベルでの神経活動記録により、エビデンスの蓄積過程に対応する神経活動が検討されてきた。例えば視線でターゲットを選択することで反応する意思決定課題においては、ターゲットの方向へのサッケード時に選択的に活動する[[LIP野]] ([[lateral intraparietal cortex]]) の細胞は刺激の呈示とともに徐々に活動が増加し、その発火率 (単位時間あたりの活動電位の数) がある閾値に到達したときに[[サッケード]]反応が起こるということが観測されている。その振る舞いはドリフト拡散モデルをはじめとする逐次サンプリングモデルと対応付けられて議論されている<ref><pubmed>8570606</pubmed></ref>。


 ヒトを対象とした研究においては、[[fMR]]Iや[[脳波]]でとらえられた神経活動とドリフト拡散モデルが関連づけられて分析されている。fMRIや脳波ではドリフト拡散モデルの試行内のダイナミクスに対応するような細胞単位の活動の変化を計測することは難しい。そのため、主にドリフト拡散モデルのパラメータの試行間変動と神経活動の試行間変動の関連に注目した分析がなされている <ref name=Frank2015><pubmed>25589744</pubmed></ref> <ref><pubmed>25844875</pubmed></ref>。例えば、fMRIで観測される[[視床下核]]の活動を反映する[[BOLD信号]]や、脳波から観測される前頭正中線[[θリズム]]等がドリフト拡散モデルの境界パラメータに影響することを仮定した分析が行われている <ref name= Frank2015 />。
 ヒトを対象とした研究においては、[[fMRI]][[脳波]]でとらえられた神経活動とドリフト拡散モデルが関連づけられて分析されている。fMRIや脳波ではドリフト拡散モデルの試行内のダイナミクスに対応するような細胞単位の活動の変化を計測することは難しい。そのため、主にドリフト拡散モデルのパラメータの試行間変動と神経活動の試行間変動の関連に注目した分析がなされている <ref name=Frank2015><pubmed>25589744</pubmed></ref> <ref><pubmed>25844875</pubmed></ref>。例えば、fMRIで観測される[[視床下核]]の活動を反映する[[BOLD信号]]や、脳波から観測される前頭正中線[[θリズム]]等がドリフト拡散モデルの境界パラメータに影響することを仮定した分析が行われている <ref name= Frank2015 />。


==その他の逐次サンプリングモデル==
==その他の逐次サンプリングモデル==

案内メニュー