「ナトリウムチャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
同義語/関連語:電位依存性ナトリウムチャネル、voltage-gated sodium channel  
同義語/関連語:電位依存性ナトリウムチャネル、voltage-gated sodium channel  


<br>  ナトリウムチャネルは高い選択性を持って[[wikipedia:JA:ナトリウム|ナトリウム]]イオンを透過させる[[イオンチャネル]]である。ナトリウムチャネルとしては、[[電位依存性ナトリウムチャネル]](Navチャネル)、および[[上皮性ナトリウムチャネル]](ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルは[[wikipedia:ja:アラン・ロイド・ホジキン|ホジキン]](Alan Lloyd Hodgkin)と[[wikipedia:ja:アンドリュー・フィールディング・ハクスりー|ハクスレー]](Andrew Fielding Huxley)による[[wikipedia:JA:イカ|イカ]]の[[巨大軸索]]を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。[[中枢神経]]や[[末梢神経]]、[[骨格筋]]、[[心筋]]、内分泌細胞等に存在し、電位依存性[[カリウムチャネル]]と[[膜電位]]を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。  
<br>  ナトリウムチャネルは高い選択性を持って[[wikipedia:JA:ナトリウム|ナトリウム]]イオンを透過させる[[イオンチャネル]]である。ナトリウムチャネルとしては、[[電位依存性ナトリウムチャネル]](Navチャネル)、および[[上皮性ナトリウムチャネル]](ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルは[[wikipedia:ja:アラン・ロイド・ホジキン|ホジキン]](Alan Lloyd Hodgkin)と[[wikipedia:ja:アンドリュー・フィールディング・ハクスりー|ハクスレー]](Andrew Fielding Huxley)による[[wikipedia:JA:イカ|イカ]]の[[巨大軸索]]を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。Navチャネルは細胞外に量が最も多い陽イオンであるナトリウムイオンを透過させることで、大きな内向き電流を生じ脱分極を効率よくもたらすことができる。[[中枢神経]]や[[末梢神経]]、[[骨格筋]]、[[心筋]]、[[内分泌細胞]]等に存在し、[[電位依存性カリウムチャネル]]と[[膜電位]]を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。  


== 神経細胞における分布  ==
== 神経細胞における分布  ==
31行目: 31行目:
  [[Image:SelectiveFilter付近のアミノ酸配列.png|thumb|300px|<b>図3. 電位依存性ナトリウムチャネル、およびカルシムチャネルのselective filter 付近のアミノ酸配列の比較</b><br />イオン選択性に最も重要であると考えられる部分をboxで囲んだ。]]   
  [[Image:SelectiveFilter付近のアミノ酸配列.png|thumb|300px|<b>図3. 電位依存性ナトリウムチャネル、およびカルシムチャネルのselective filter 付近のアミノ酸配列の比較</b><br />イオン選択性に最も重要であると考えられる部分をboxで囲んだ。]]   


 Navチャネルは細胞外に量が最も多い陽イオンであるナトリウムイオンを透過させることで、大きな内向き電流を生じ脱分極を効率よくもたらすことができる。イオン選択性に関わるselective filterは5番目のヘリックス(S5)と6番目のヘリックス(S6)の間に存在する。1価の[[wikipedia:JA:正電荷|正電荷]]を持つイオンの透過性はイオン半径に比例している。イオン半径の小さい[[wikipedia:JA:プロトン|プロトン]]に対して、非常に強い透過性を持ち、Li<sup>+</sup>≈Na<sup>+</sup>&gt;K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>の順に透過性が高い。またグアニジウムイオンはK<sup>+</sup>より透過しやすい。図3に真核生物のNavチャネルのselective filterのアミノ酸配列を示した。電位依存性カルシウムチャネルでは4つのリピート、すべてがマイナス電荷を持った[[グルタミン酸]]になっているが、Navチャネルではこの部位のアミノ酸は各リピートで異なり、電荷を持たない [[アミノ酸]]も含まれている。[[アスパラギン酸]]、グルタミン酸、リジン、アラニンが形成する環状の配置が、ナトリウムイオンの選択性に重要であると考えられている。 リピートIII, IVの[[wikipedia:JA:リジン|リジン]]、[[アラニン]]のいずれかをグルタミン酸に変異させると、ナトリウムイオンだけでなく、カリウムイオン、アンモニウムイオン、さらにカルシウムイオンに対しても透過性が現れる。両方ともグルタミン酸に置き換えると、ナトリウムイオンよりカルシウムイオンに対して選択性が大きくなる<ref><pubmed> 1313551 </pubmed></ref>。
 イオン選択性に関わるselective filterは5番目のヘリックス(S5)と6番目のヘリックス(S6)の間に存在する。1価の[[wikipedia:JA:正電荷|正電荷]]を持つイオンの透過性はイオン半径に比例している。イオン半径の小さい[[wikipedia:JA:プロトン|プロトン]]に対して、非常に強い透過性を持ち、Li<sup>+</sup>≈Na<sup>+</sup>&gt;K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>の順に透過性が高い。またグアニジウムイオンはK<sup>+</sup>より透過しやすい。図3に真核生物のNavチャネルのselective filterのアミノ酸配列を示した。電位依存性カルシウムチャネルでは4つのリピート、すべてがマイナス電荷を持った[[グルタミン酸]]になっているが、Navチャネルではこの部位のアミノ酸は各リピートで異なり、電荷を持たない [[アミノ酸]]も含まれている。[[アスパラギン酸]]、グルタミン酸、リジン、アラニンが形成する環状の配置が、ナトリウムイオンの選択性に重要であると考えられている。 リピートIII, IVの[[wikipedia:JA:リジン|リジン]]、[[アラニン]]のいずれかをグルタミン酸に変異させると、ナトリウムイオンだけでなく、カリウムイオン、アンモニウムイオン、さらにカルシウムイオンに対しても透過性が現れる。両方ともグルタミン酸に置き換えると、ナトリウムイオンよりカルシウムイオンに対して選択性が大きくなる<ref><pubmed> 1313551 </pubmed></ref>。


== 膜電位依存的な活性化および不活性化  ==
== 膜電位依存的な活性化および不活性化  ==
148行目: 148行目:
 また心筋に発現しているNav1.5の変異は、[[先天性QT延長症候群]](LQT)、特発性の[[wikipedia:ja:心室細動|心室細動]]等の[[wikipedia:ja:不整脈|不整脈]]を引き起こす。LQTを引き起こす変異は複数存在するが、その多くはチャネルの不活性化が不完全になる変異である<ref><pubmed> 8917568 </pubmed></ref> <ref><pubmed> 7651517 </pubmed></ref> <ref><pubmed> 8620612 </pubmed></ref>。このため持続的にナトリウム電流が流れ膜の再分極が遅れるため、QT間隔が伸長する。LQTの患者のうちNav1.5に変異を持つのは約10%である。  
 また心筋に発現しているNav1.5の変異は、[[先天性QT延長症候群]](LQT)、特発性の[[wikipedia:ja:心室細動|心室細動]]等の[[wikipedia:ja:不整脈|不整脈]]を引き起こす。LQTを引き起こす変異は複数存在するが、その多くはチャネルの不活性化が不完全になる変異である<ref><pubmed> 8917568 </pubmed></ref> <ref><pubmed> 7651517 </pubmed></ref> <ref><pubmed> 8620612 </pubmed></ref>。このため持続的にナトリウム電流が流れ膜の再分極が遅れるため、QT間隔が伸長する。LQTの患者のうちNav1.5に変異を持つのは約10%である。  


 中枢神経系で発現しているNav1.1,1.2,1.3の変異は[[てんかん]]の原因になる。これまで、[[wikipedia:Generalized epilepsy with febrile seizures plus|全般てんかん熱性痙攣プラス]](generalized epilepsy with febrile seizures plus, GEFS+)および[[wikipedia:SMEI|乳児重症ミオクロニーてんかん]](severe myoclonic epilepsy of infant, SMEI)を引き起こすNav1.1の変異が多数例報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異はβ1サブユニットにも見だされ、この変異を持ったβサブユニットは、αサブユニットの機能の調整をすることができない<ref><pubmed> 12486163 </pubmed></ref> <ref><pubmed> 9697698 </pubmed></ref>。 [[侵害受容]]に関わる[[一次知覚ニューロン]]に発現しているNav1.7の変異は、[[先天性無痛症]](congenital insensitivity to pain, CIP)や[[先端紅痛症]](erythromelalgia, IEM)、[[発作性神経痛]](paroxysmal extreme pain disorder, PEPD)に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に[[wikipedia:ja:終止コドン|終止コドン]]が挿入され、チャネルとしての機能を喪失することが分かっている<ref name="refa"><pubmed> 20101409 </pubmed></ref>。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、[[閾値]]が低くなり活動電位が生じやすくなる17。PEPDの患者では不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルでは速い不活性化が高い電位でないと生じなくなる。そのため低い[[膜電位]]で電気的に興奮しやすくなると考えられている<ref name="refa" />。  
 中枢神経系で発現しているNav1.1,Nav1.2,Nav1.3の変異は[[てんかん]]の原因になる。これまで、[[wikipedia:Generalized epilepsy with febrile seizures plus|全般てんかん熱性痙攣プラス]](generalized epilepsy with febrile seizures plus, GEFS+)および[[wikipedia:SMEI|乳児重症ミオクロニーてんかん]](severe myoclonic epilepsy of infant, SMEI)を引き起こすNav1.1の変異が多数例報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異はβ1サブユニットにも見だされ、この変異を持ったβサブユニットは、αサブユニットの機能の調整をすることができない<ref><pubmed> 12486163 </pubmed></ref> <ref><pubmed> 9697698 </pubmed></ref>。 [[侵害受容]]に関わる[[一次知覚ニューロン]]に発現しているNav1.7の変異は、[[先天性無痛症]](congenital insensitivity to pain, CIP)や[[先端紅痛症]](erythromelalgia, IEM)、[[発作性神経痛]](paroxysmal extreme pain disorder, PEPD)に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に[[wikipedia:ja:終止コドン|終止コドン]]が挿入され、チャネルとしての機能を喪失することが分かっている<ref name="refa"><pubmed> 20101409 </pubmed></ref>。またIEMでは遺伝子の変異により、低い電位でNavチャネルが開口するため、[[閾値]]が低くなり活動電位が生じやすくなる<ref name="refa" />。PEPDの患者では不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったNavチャネルでは不活性化が高い電位でないと生じなくなる。そのため低い[[膜電位]]で電気的に興奮しやすくなると考えられている<ref name="refa" />。  


== 関連項目  ==
== 関連項目  ==
79

回編集