「ナトリウムチャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
2行目: 2行目:


 ナトリウムチャネルは高い選択性を持ってナトリウムイオンを透過させるイオンチャネルである。ナトリウムチャネルとしては、電位依存性ナトリウムチャネル(Navチャネル)、および上皮性ナトリウムチャネル(ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルはホジキン(Alan Lloyd Hodgkin)とハクスレー(Andrew Fielding Huxley)によるイカの巨大軸索を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。中枢神経や末梢神経、骨格筋、心筋に存在し、カリウムチャネルとともに膜電位を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。  
 ナトリウムチャネルは高い選択性を持ってナトリウムイオンを透過させるイオンチャネルである。ナトリウムチャネルとしては、電位依存性ナトリウムチャネル(Navチャネル)、および上皮性ナトリウムチャネル(ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルはホジキン(Alan Lloyd Hodgkin)とハクスレー(Andrew Fielding Huxley)によるイカの巨大軸索を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。中枢神経や末梢神経、骨格筋、心筋に存在し、カリウムチャネルとともに膜電位を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。  
<br>


== 神経細胞における分布  ==
== 神経細胞における分布  ==


&nbsp; Navチャネルは広く神経細胞において発現し、[[樹状突起]]、細胞体、[[軸索]]に存在しているが、一様に発現しているのではなく、[[有髄神経]]の軸索に存在する[[ランビエ紋輪]](nodes of Ranvier)、および軸索起始部(axon initial segment)に強く局在する。nodes of Ranvierとaxon initial segmentでのNavチャネルは、アダプタータンパク質であるアンキリンを介して細胞の裏打ち構造に繋ぎとめられることで局在が可能になっている。  
&nbsp; Navチャネルは広く[[神経細胞]]において発現し、[[樹状突起]]、細胞体、[[軸索]]に存在しているが、一様に発現しているのではなく、[[有髄神経]]の軸索に存在する[[ランビエ紋輪]](nodes of Ranvier)、および軸索起始部(axon initial segment)に強く局在する。ランビエ紋輪とaxon initial segmentでのNavチャネルは、アダプタータンパク質であるアンキリンを介して細胞の裏打ち構造に繋ぎとめられることで局在が可能になっている。  
 
<br>


== 構造 ==
== 構造 ==


=== 2次構造  ===
=== 2次構造  ===


 脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型のβサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通ヘリックスを含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]](電位依存性カルシウムチャネル、電位依存性カリウムチャネルなど)と同様であり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する。&nbsp;[[Image:Nav channelの2次元構造.png|thumb|right|355x142px|図1. 電位依存性ナトリウムチャネルの2次構造]]  
[[Image:Nav channelの2次元構造.png|thumb|right|482x199px|図1. 電位依存性ナトリウムチャネルの2次構造]]  
 
 脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型のβサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通ヘリックスを含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]](電位依存性カルシウムチャネル、電位依存性カリウムチャネルなど)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する


<br>


=== 立体構造  ===
=== 立体構造  ===
33行目: 30行目:
 一般に、イオンチャネルの電位センサーは4つの膜貫通ヘリックスで構成されており、4番目のヘッリクス(S4)に存在するリジンやアルギニンなどのプラス電荷を帯びたアミノ酸が電位の感知に重要であることが分かっている。細胞膜が脱分極すると電位センサーが動き、“ゲート“が開くことで、ナトリウムイオンが流れる。  
 一般に、イオンチャネルの電位センサーは4つの膜貫通ヘリックスで構成されており、4番目のヘッリクス(S4)に存在するリジンやアルギニンなどのプラス電荷を帯びたアミノ酸が電位の感知に重要であることが分かっている。細胞膜が脱分極すると電位センサーが動き、“ゲート“が開くことで、ナトリウムイオンが流れる。  


 Navチャネルは脱分極により活性化された後、”不活性化”する。不活性化とは一旦開いたチャネルを閉じておく機構で、連続的なスパイク状の活動電位の形成に必須である(活動電位の項を参照)。またこの機構が存在することで、活動電位に不応期が生じる。不活性化には数ミリ秒単位の速い不活性化と数十ミリ秒単位の遅い不活性化の2つの機構が存在する。速い不活性化については電位依存性カリウムチャネル(Kv1、Shaker型)のメカニズムと同様のball and chain モデルによる孔の細胞内側からのブロックであることが知られている。リピートIIIとリピートIVの間のリンカー部分を認識する抗体を細胞内側から投与すると不活性化が遅くなる4、またリンカー部分を欠失したチャネルは不活性が著しく遅いこと5、さらにリンカーを欠失したチャネルに、“ball”に相当するペプチド(IFM)を細胞内側から投与すると、速い不活性化が起きることが分かっている6。遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。ヒトの骨格筋や心筋の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。  
 Navチャネルは脱分極により活性化された後、”不活性化”する。不活性化とは一旦開いたチャネルを閉じておく機構で、連続的なスパイク状の活動電位の形成に必須である(活動電位の項を参照)。またこの機構が存在することで、活動電位に不応期が生じる。不活性化には数ミリ秒単位の速い不活性化と数十ミリ秒単位の遅い不活性化の2つの機構が存在する。速い不活性化については電位依存性カリウムチャネル(Kv1、Shaker型)のメカニズムと同様のball and chain modelによる孔の細胞内側からのブロックであることが知られている。リピートIIIとリピートIVの間のリンカー部分を認識する抗体を細胞内側から投与すると不活性化が遅くなる4、またリンカー部分を欠失したチャネルは不活性が著しく遅いこと5、さらにリンカーを欠失したチャネルに、“ball”に相当するペプチド(IFM)を細胞内側から投与すると、速い不活性化が起きることが分かっている6。遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。ヒトの骨格筋や心筋の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。  


 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの神経細胞では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する(持続性ナトリウム電流)。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく(resurgent電流)、これによりスパイクの後に脱分極が引き起こされることが知られている。  
 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの神経細胞では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する(持続性ナトリウム電流)。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく(resurgent電流)、これによりスパイクの後に脱分極が引き起こされることが知られている。  
43行目: 40行目:
 またNavチャネルと似た配列を持つNaxと呼ばれるタンパク質が存在する。アミノ酸配列上、Navチャネルと同様、電位センサーおよびポアドメインに似た構造を持っているが、電位依存的にナトリウムイオンを透過させる機能を持っていない。Naxは中枢神経系などに発現し、チャネルではなくナトリウムセンサーとして働いているという報告がある7。  
 またNavチャネルと似た配列を持つNaxと呼ばれるタンパク質が存在する。アミノ酸配列上、Navチャネルと同様、電位センサーおよびポアドメインに似た構造を持っているが、電位依存的にナトリウムイオンを透過させる機能を持っていない。Naxは中枢神経系などに発現し、チャネルではなくナトリウムセンサーとして働いているという報告がある7。  


 サソリやイソギンチャク、クモなどの種々の生物毒はNavチャネルに結合することが知られているが、結合性はαサブユニット間で異なる。フグ毒として知られているテトロドトキシン(tetrodotoxin, TTX)はナトリウムチャネルの細胞外側に結合し、ナトリウムイオン透過を阻害する。テトロドトキシンは多くのナトリムチャネルに結合するが、Nav1.5、Nav1.8およびNav1.9はテトロドトキシン抵抗性である。 [[Image:表.png|thumb|center|749x469px|. αサブユニットの発現場所、機能等]]
 サソリやイソギンチャク、クモなどの種々の生物毒はNavチャネルに結合することが知られているが、結合性はαサブユニット間で異なる。[[フグ毒]]として知られているテトロドトキシン(tetrodotoxin, TTX)はナトリウムチャネルの細胞外側に結合し、ナトリウムイオン透過を阻害する。テトロドトキシンは多くのナトリムチャネルに結合するが、Nav1.5、Nav1.8およびNav1.9はテトロドトキシン抵抗性である。  
 
{| cellspacing="1" cellpadding="1" border="1" align="center" style="width: 753px; height: 531px;"
|+ 表. 各αサブユニットの発現場所、および機能等
|-
| <br>
| 発現場所<br><br>
| 阻害剤<br><br>
| ヒトにおける染色体上の遺伝子の位置<br><br><br>
| ヒトの遺伝病<br><br>
|-
| Nav1.1 <br>(SCN1a) <br><br>
| 中枢神経(主に神経細胞の細胞体)、心筋<br>
| テトロドトキシン、サキシトキシン
<br>
 
| 2番染色体<br>
| 全般性てんかん熱性痙攣プラス、乳児重症ミオクロニーてんかん<br>
|-
| Nav.1.2<br>(SCN2a)<br>
| 中枢神経(主に無髄、髄鞘化前の軸索)<br><br>
| テトロドトキシン、サキシトキシン<br>
| 2番染色体<br>
| 全般性てんかん熱性痙攣プラス、乳児重症ミオクロニーてんかん<br><br>
|-
| Nav1.3<br>(SCN3a)<br>
| 中枢神経(主に初期胚)、心筋<br>
| テトロドトキシン、サキシトキシン<br>
| 2番染色体<br>
| 全般性てんかん熱性痙攣プラス、乳児重症ミオクロニーてんかん<br><br>
|-
| Nav1.4<br>(SCN4a)<br>
| 骨格筋<br>
| μ-コノトキシン、テトロドトキシン、サキシトキシン<br>
| 17番染色体<br>
| 高カリウム性周期性四肢麻痺、筋硬直症<br>
|-
| Nav1.5<br>(SCN5a)<br>
| 心筋、脳の一部<br>
| テトロドトキシン抵抗性、サキシトキシン抵抗性<br><br>
| 3番染色体<br>
| 先天性QT延長症候群、ブルガダ症候群<br>
|-
| Nav1.6<br>(SCN8a<br>
| 脳、有髄および後根神経節細胞<br>
| <br>
| 12番染色体<br>
| <br>
|-
| Nav1.7<br>(SCN9a<br>
| 後根神経節細胞、交感神経、シュワン細胞<br>
| テトロドトキシン、サキシトキシン<br>
| 2番染色体<br>
| 無痛症、先端紅痛症<br>
|-
| Nav1.8<br>(SCN10a)<br>
| 後根神経節細胞<br>
| テトロドトキシン抵抗性<br>
| 3番染色体<br>
| <br>
|-
| Nav1.9<br>(SCN11a)<br>
| 後根神経節細胞、三叉神経<br>
| テトロドトキシン抵抗性<br>
| 3番染色体<br>
| <br>
|}
 
<br>


== βサブユニット  ==
== βサブユニット  ==
51行目: 116行目:
== 薬剤による機能の修飾  ==
== 薬剤による機能の修飾  ==


 Navチャネルに特異的に結合し、その性質を変える種々の薬剤が知られている(表参照)。一番初めに発見されたのは、フグ毒として知られているテトロドトキシンで、ナトリウムチャネルのポアドメインに結合して、イオン透過を阻害する(フグ毒の項を参照)。β-サソリ毒はナトリウムチャネルの電位センサー部分に結合し、不活性化を阻害する。また、アコニチニン、グラヤノトキシン、ベラトリジン、バトラコトキシンは細胞膜を透過し、細胞の内側からナトリウムチャネルに結合して、ナトリウムチャネルが開いている時間を長くする作用がある。また局所麻酔薬として知られているリドカインは不活性化状態を安定化し電流量を減らす作用がある。  
 Navチャネルに特異的に結合し、その性質を変える種々の薬剤が知られている(表参照)。一番初めに発見されたのは、フグ毒として知られているテトロドトキシンで、ナトリウムチャネルのポアドメインに結合して、イオン透過を阻害する。β-サソリ毒はナトリウムチャネルの電位センサー部分に結合し、不活性化を阻害する。また、アコニチニン、グラヤノトキシン、ベラトリジン、バトラコトキシンは細胞膜を透過し、細胞の内側からナトリウムチャネルに結合して、ナトリウムチャネルが開いている時間を長くする作用がある。また局所麻酔薬として知られているリドカインは不活性化状態を安定化し電流量を減らす作用がある。  


== 転写の制御  ==
== 転写の制御  ==
79行目: 144行目:
 また心筋に発現しているNav1.5の変異は、先天性QT延長症候群(LQT)、特発性の心室細動等の不整脈を引き起こす。LQTを引き起こす変異は複数存在するが、その多くはチャネルの不活性化が不完全になる変異である12 13 14。このため持続的にナトリウム電流が流れ膜の再分極が遅れるため、QT間隔が伸長する。LQTの患者のうちNav1.5に変異を持つのは約10%である。  
 また心筋に発現しているNav1.5の変異は、先天性QT延長症候群(LQT)、特発性の心室細動等の不整脈を引き起こす。LQTを引き起こす変異は複数存在するが、その多くはチャネルの不活性化が不完全になる変異である12 13 14。このため持続的にナトリウム電流が流れ膜の再分極が遅れるため、QT間隔が伸長する。LQTの患者のうちNav1.5に変異を持つのは約10%である。  


 中枢神経系で発現しているNav1.1の変異はてんかんの原因になる。これまで、全般てんかん熱性痙攣プラス(generalized epilepsy with febrile seizures plus, GEFS+)および乳児重症ミオクロニーてんかん(severe myoclonic epilepsy of infant, SMEI)を引き起こすNav1.1の変異が多数例、報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異はβ1サブユニットにも見だされ、この変異を持ったβサブユニットは、αサブユニットの機能の調整をすることができない15 16。 侵害受容に関わる一次知覚ニューロンに発現しているNav1.7の変異は、先天性の無痛症(congenital insensitivity to pain, CIP)や先端紅痛症(erythromelalgia, IEM)、発作性の神経痛(paroxysmal extreme pain disorder, PEPD)に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に終始コドンが挿入され、チャネルとしての機能を喪失することが分かっている17。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、閾値が低くなり活動電位が生じやすくなる17。PEPDの患者では速い不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルは速い不活性化が起こる膜電位が高い電位にシフトする。そのため低い膜電位でも電気的に興奮しやすくなり、PEPDの症状が現れると考えられている17。
 中枢神経系で発現しているNav1.1の変異は[[てんかん]]の原因になる。これまで、全般てんかん熱性痙攣プラス(generalized epilepsy with febrile seizures plus, GEFS+)および乳児重症ミオクロニーてんかん(severe myoclonic epilepsy of infant, SMEI)を引き起こすNav1.1の変異が多数例、報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異はβ1サブユニットにも見だされ、この変異を持ったβサブユニットは、αサブユニットの機能の調整をすることができない15 16。 侵害受容に関わる一次知覚ニューロンに発現しているNav1.7の変異は、先天性の無痛症(congenital insensitivity to pain, CIP)や先端紅痛症(erythromelalgia, IEM)、発作性の神経痛(paroxysmal extreme pain disorder, PEPD)に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に終始コドンが挿入され、チャネルとしての機能を喪失することが分かっている17。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、閾値が低くなり活動電位が生じやすくなる17。PEPDの患者では速い不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルは速い不活性化が起こる膜電位が高い電位にシフトする。そのため低い膜電位でも電気的に興奮しやすくなり、PEPDの症状が現れると考えられている17。
79

回編集