「ナトリウムチャネル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
15行目: 15行目:
[[Image:Nav channelの2次元構造.png|thumb|right|482x199px|図1. 電位依存性ナトリウムチャネルの二次構造]]  
[[Image:Nav channelの2次元構造.png|thumb|right|482x199px|図1. 電位依存性ナトリウムチャネルの二次構造]]  


 脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型の&betaサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つの&alpaサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋では&alpaサブユニットと1つのβサブユニットにより構成されている。&alpaサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通ヘリックスを含んでいる(図1参照)。基本的な&alpaサブユニットの二次構造は他の[[電位依存性イオンチャネル]](電位依存性[[カルシウムチャネル]]、電位依存性[[カリウムチャネル]]など)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する  
 脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型の&betaサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通ヘリックスを含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]](電位依存性[[カルシウムチャネル]]、電位依存性[[カリウムチャネル]]など)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する  


[[Image:Nachannel-TopView.png|thumb|right|229x254px|図2. 電位依存性ナトリウムチャネルの立体構造。この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al.2011より転載)]]  
[[Image:Nachannel-TopView.png|thumb|right|229x254px|図2. 電位依存性ナトリウムチャネルの立体構造。この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al.2011より転載)]]  
23行目: 23行目:
=== 立体構造  ===
=== 立体構造  ===


 2011年、Catterallらは[[wikipedia:ja:真正細菌|真正細菌]]の一種であるArcobacter butzleri由来の電位依存性ナトリウムチャネル(NachBac)を用いてX線結晶構造解析を行い、その三次元構造を明らかにした1。[[wikipedia:ja:真核生物|真核生物]]のNavチャネルが1分子に4つのリピート構造を含んでいるのに対して、NachBacはホモ4量体として機能する。電位依存性のカリウムチャネルの構造と同様に、&alpaサブユニットの各リピートのS5およびS6が集まってポアドメインを形成し、その四隅にS1からS4によって構成される電位センサーが配置する(図2参照)。
 2011年、Catterallらは[[wikipedia:ja:真正細菌|真正細菌]]の一種であるArcobacter butzleri由来の電位依存性ナトリウムチャネル(NachBac)を用いてX線結晶構造解析を行い、その三次元構造を明らかにした1。[[wikipedia:ja:真核生物|真核生物]]のNavチャネルが1分子に4つのリピート構造を含んでいるのに対して、NachBacはホモ4量体として機能する。電位依存性のカリウムチャネルの構造と同様に、αサブユニットの各リピートのS5およびS6が集まってポアドメインを形成し、その四隅にS1からS4によって構成される電位センサーが配置する(図2参照)。


 イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた2。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。  
 イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた2。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。  
47行目: 47行目:
<br>  
<br>  


== &alpaサブユニットの多様性 ==
== &alpha;サブユニットの多様性 ==


[[Image:Tree.png|thumb|right|図4. &alpaサブユニットの系統樹]] Navチャネルの&alpaサブユニットは、[[wikipedia:ja:哺乳類|哺乳類]]では9つの[[wikipedia:ja:遺伝子|遺伝子]]が知られている。それぞれ発現場所や発生段階における発現のタイミング、および分子特性や薬理学的作用などが異なっている(表、図4参照)。Nav1.4は骨格筋、Nav1.5は心筋に多く発現し、Nav1.7、Nav1.8、Nav1.9は末梢神経に発現している。Nav1.1、Nav1.2、Nav1.3およびNav1.6は主に中枢神経で発現しているが、一部は末梢神経にも存在する。Axon initial segmentとランビエ紋輪のNavチャネルの多くはNav1.6であることが知られている。中枢神経細胞の樹状突起にもNav1.6は分布する。&nbsp;  
[[Image:Tree.png|thumb|right|図4. &alpha;サブユニットの系統樹]] Navチャネルの&alpha;サブユニットは、[[wikipedia:ja:哺乳類|哺乳類]]では9つの[[wikipedia:ja:遺伝子|遺伝子]]が知られている。それぞれ発現場所や発生段階における発現のタイミング、および分子特性や薬理学的作用などが異なっている(表、図4参照)。Nav1.4は骨格筋、Nav1.5は心筋に多く発現し、Nav1.7、Nav1.8、Nav1.9は末梢神経に発現している。Nav1.1、Nav1.2、Nav1.3およびNav1.6は主に中枢神経で発現しているが、一部は末梢神経にも存在する。Axon initial segmentとランビエ紋輪のNavチャネルの多くはNav1.6であることが知られている。中枢神経細胞の樹状突起にもNav1.6は分布する。&nbsp;  


 またNavチャネルと似た配列を持つNaxと呼ばれるタンパク質が存在する。アミノ酸配列上、Navチャネルと同様、電位センサーおよびポアドメインに似た構造を持っているが、電位依存的にナトリウムイオンを透過させる機能を持っていない。Naxは中枢神経系などに発現し、チャネルではなくナトリウムセンサーとして働いているという報告がある7。  
 またNavチャネルと似た配列を持つNaxと呼ばれるタンパク質が存在する。アミノ酸配列上、Navチャネルと同様、電位センサーおよびポアドメインに似た構造を持っているが、電位依存的にナトリウムイオンを透過させる機能を持っていない。Naxは中枢神経系などに発現し、チャネルではなくナトリウムセンサーとして働いているという報告がある7。  


 [[wikipedia:ja:サソリ|サソリ]]や[[wikipedia:ja:イソギンチャク|イソギンチャク]]、[[wikipedia:ja:クモ|クモ]]などの種々の生物毒はNavチャネルに結合することが知られているが、結合性は&alpaサブユニット間で異なる。[[フグ毒]]として知られているテトロドトキシン(tetrodotoxin, TTX)はナトリウムチャネルの細胞外側に結合し、ナトリウムイオン透過を阻害する。テトロドトキシンは多くのナトリムチャネルに結合するが、Nav1.5、Nav1.8およびNav1.9はテトロドトキシン抵抗性である。  
 [[wikipedia:ja:サソリ|サソリ]]や[[wikipedia:ja:イソギンチャク|イソギンチャク]]、[[wikipedia:ja:クモ|クモ]]などの種々の生物毒はNavチャネルに結合することが知られているが、結合性は&alpha;サブユニット間で異なる。[[フグ毒]]として知られているテトロドトキシン(tetrodotoxin, TTX)はナトリウムチャネルの細胞外側に結合し、ナトリウムイオン透過を阻害する。テトロドトキシンは多くのナトリムチャネルに結合するが、Nav1.5、Nav1.8およびNav1.9はテトロドトキシン抵抗性である。  


{| cellspacing="1" cellpadding="1" border="1" align="center" style="width: 753px; height: 531px;"
{| cellspacing="1" cellpadding="1" border="1" align="center" style="width: 753px; height: 531px;"
|+ 表. 各&alpaサブユニットの発現場所、および機能等
|+ 表. 各&alpha;サブユニットの発現場所、および機能等
|-
|-
| <br>  
| <br>  
125行目: 125行目:
== βサブユニット  ==
== βサブユニット  ==


 βサブユニットは1回膜貫通型のサブユニットで、β1からβ4まで4種類存在する。これまでの研究により&alpaサブユニットだけでも、電位依存的にナトリウムチャネルを透過させる機能を保持していることが分かっているが、βサブユニットは&alpaサブユニットと共に存在することで、ナトリウムチャネルの機能を変える。またすべてのβサブユニットは細胞外側に細胞接着に関わる分子に見られるイムノグロブリンドメインを持っている。そのため一部のβサブユニットは、チャネルの機能を補完するだけでなく、種々の細胞接着因子と結合し、細胞運動や[[wikipedia:ja:細胞接着|細胞接着]]、[[wikipedia:neurite|神経突起]]の伸長に重要な役割を担っていることが知られている。またβ4は細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わることが示唆されている。  
 βサブユニットは1回膜貫通型のサブユニットで、β1からβ4まで4種類存在する。これまでの研究により&alpha;サブユニットだけでも、電位依存的にナトリウムチャネルを透過させる機能を保持していることが分かっているが、βサブユニットは&alpha;サブユニットと共に存在することで、ナトリウムチャネルの機能を変える。またすべてのβサブユニットは細胞外側に細胞接着に関わる分子に見られるイムノグロブリンドメインを持っている。そのため一部のβサブユニットは、チャネルの機能を補完するだけでなく、種々の細胞接着因子と結合し、細胞運動や[[wikipedia:ja:細胞接着|細胞接着]]、[[wikipedia:neurite|神経突起]]の伸長に重要な役割を担っていることが知られている。またβ4は細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わることが示唆されている。  


== 薬剤による機能の修飾  ==
== 薬剤による機能の修飾  ==
151行目: 151行目:
== チャネル病  ==
== チャネル病  ==


 Navチャネルは活動電位の形成に本質的な役割を担っており、変異が生じると重篤な病気の原因となる。骨格筋に発現しているNav1.4の&alpaサブユニットにおけるある種の変異は、家族性の[[wikipedia:ja:周期性四肢麻痺|周期性四肢麻痺]]や[[wikipedia:Myotonia congenita|筋強直症]]を引き起こす。高カリウム性の周期性四肢麻痺では、Nav1.4の不活性化が不完全になり、持続的にナトリウム電流が流れる。そのため膜の再分極が浅くなり、Navチャネルの不活性化が解除されなくなる。その結果、活動電位が伝搬しなくなり筋の麻痺が生じる10 11。  
 Navチャネルは活動電位の形成に本質的な役割を担っており、変異が生じると重篤な病気の原因となる。骨格筋に発現しているNav1.4の&alpha;サブユニットにおけるある種の変異は、家族性の[[wikipedia:ja:周期性四肢麻痺|周期性四肢麻痺]]や[[wikipedia:Myotonia congenita|筋強直症]]を引き起こす。高カリウム性の周期性四肢麻痺では、Nav1.4の不活性化が不完全になり、持続的にナトリウム電流が流れる。そのため膜の再分極が浅くなり、Navチャネルの不活性化が解除されなくなる。その結果、活動電位が伝搬しなくなり筋の麻痺が生じる10 11。  


 また心筋に発現しているNav1.5の変異は、[[wikipedia:Long QT syndrome|先天性QT延長症候群(LQT)]]、特発性の[[wikipedia:ja:心室細動|心室細動]]等の[[wikipedia:ja:不整脈|不整脈]]を引き起こす。LQTを引き起こす変異は複数存在するが、その多くはチャネルの不活性化が不完全になる変異である12 13 14。このため持続的にナトリウム電流が流れ膜の再分極が遅れるため、QT間隔が伸長する。LQTの患者のうちNav1.5に変異を持つのは約10%である。  
 また心筋に発現しているNav1.5の変異は、[[wikipedia:Long QT syndrome|先天性QT延長症候群(LQT)]]、特発性の[[wikipedia:ja:心室細動|心室細動]]等の[[wikipedia:ja:不整脈|不整脈]]を引き起こす。LQTを引き起こす変異は複数存在するが、その多くはチャネルの不活性化が不完全になる変異である12 13 14。このため持続的にナトリウム電流が流れ膜の再分極が遅れるため、QT間隔が伸長する。LQTの患者のうちNav1.5に変異を持つのは約10%である。  


 中枢神経系で発現しているNav1.1の変異は[[てんかん]]の原因になる。これまで、[[wikipedia:Generalized epilepsy with febrile seizures plus|全般てんかん熱性痙攣プラス(generalized epilepsy with febrile seizures plus, GEFS+)]]および[[wikipedia:SMEI|乳児重症ミオクロニーてんかん(severe myoclonic epilepsy of infant, SMEI)]]を引き起こすNav1.1の変異が多数例、報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異はβ1サブユニットにも見だされ、この変異を持ったβサブユニットは、&alpaサブユニットの機能の調整をすることができない15 16。 侵害受容に関わる[[wikipedia:sensory neuron|一次知覚ニューロン]]に発現しているNav1.7の変異は、[[wikipedia:ja:先天性無痛無汗症|先天性の無痛症(congenital insensitivity to pain, CIP)]]や[[wikipedia:erythromelalgia|先端紅痛症(erythromelalgia, IEM)]]、[[wikipedia:paroxysmal extreme pain disorder|発作性の神経痛(paroxysmal extreme pain disorder, PEPD)]]に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に[[wikipedia:ja:終止コドン|終止コドン]]が挿入され、チャネルとしての機能を喪失することが分かっている17。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、[[閾値]]が低くなり活動電位が生じやすくなる17。PEPDの患者では速い不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルは速い不活性化が起こる膜電位が高い電位にシフトする。そのため低い膜電位でも電気的に興奮しやすくなり、PEPDの症状が現れると考えられている17。
 中枢神経系で発現しているNav1.1の変異は[[てんかん]]の原因になる。これまで、[[wikipedia:Generalized epilepsy with febrile seizures plus|全般てんかん熱性痙攣プラス(generalized epilepsy with febrile seizures plus, GEFS+)]]および[[wikipedia:SMEI|乳児重症ミオクロニーてんかん(severe myoclonic epilepsy of infant, SMEI)]]を引き起こすNav1.1の変異が多数例、報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異はβ1サブユニットにも見だされ、この変異を持ったβサブユニットは、&alpha;サブユニットの機能の調整をすることができない15 16。 侵害受容に関わる[[wikipedia:sensory neuron|一次知覚ニューロン]]に発現しているNav1.7の変異は、[[wikipedia:ja:先天性無痛無汗症|先天性の無痛症(congenital insensitivity to pain, CIP)]]や[[wikipedia:erythromelalgia|先端紅痛症(erythromelalgia, IEM)]]、[[wikipedia:paroxysmal extreme pain disorder|発作性の神経痛(paroxysmal extreme pain disorder, PEPD)]]に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に[[wikipedia:ja:終止コドン|終止コドン]]が挿入され、チャネルとしての機能を喪失することが分かっている17。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、[[閾値]]が低くなり活動電位が生じやすくなる17。PEPDの患者では速い不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルは速い不活性化が起こる膜電位が高い電位にシフトする。そのため低い膜電位でも電気的に興奮しやすくなり、PEPDの症状が現れると考えられている17。