「ナトリウムチャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
23行目: 23行目:
=== 立体構造  ===
=== 立体構造  ===


 2011年、Catterallらは[[wikipedia:ja:真正細菌|真正細菌]]の一種であるArcobacter butzleri由来の電位依存性ナトリウムチャネル(NachBac)を用いてX線結晶構造解析を行い、その三次元構造を明らかにした<ref><pubmed> 21743477 </ref></pubmed>。[[wikipedia:ja:真核生物|真核生物]]のNavチャネルが1分子に4つのリピート構造を含んでいるのに対して、NachBacはホモ4量体として機能する。電位依存性のカリウムチャネルの構造と同様に、&alpha;サブユニットの各リピートのS5およびS6が集まってポアドメインを形成し、その四隅にS1からS4によって構成される電位センサーが配置する(図2参照)。  
 2011年、Catterallらは[[wikipedia:ja:真正細菌|真正細菌]]の一種であるArcobacter butzleri由来の電位依存性ナトリウムチャネル(NachBac)を用いてX線結晶構造解析を行い、その三次元構造を明らかにした<ref><pubmed> 21743477 </pubmed></ref>。[[wikipedia:ja:真核生物|真核生物]]のNavチャネルが1分子に4つのリピート構造を含んでいるのに対して、NachBacはホモ4量体として機能する。電位依存性のカリウムチャネルの構造と同様に、&alpha;サブユニットの各リピートのS5およびS6が集まってポアドメインを形成し、その四隅にS1からS4によって構成される電位センサーが配置する(図2参照)。  


 イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた2。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。  
 イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた<ref>'''Bertil Hille''' <br>Ion Channels of Excitable Membrane third edition<br>Sinauer Associates,Inc.(Massachusetts,USA)</ref>。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。  


<br>  
<br>  
156行目: 156行目:


 中枢神経系で発現しているNav1.1の変異は[[てんかん]]の原因になる。これまで、[[wikipedia:Generalized epilepsy with febrile seizures plus|全般てんかん熱性痙攣プラス(generalized epilepsy with febrile seizures plus, GEFS+)]]および[[wikipedia:SMEI|乳児重症ミオクロニーてんかん(severe myoclonic epilepsy of infant, SMEI)]]を引き起こすNav1.1の変異が多数例、報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異は&beta;1サブユニットにも見だされ、この変異を持った&beta;サブユニットは、&alpha;サブユニットの機能の調整をすることができない15 16。 侵害受容に関わる[[wikipedia:sensory neuron|一次知覚ニューロン]]に発現しているNav1.7の変異は、[[wikipedia:ja:先天性無痛無汗症|先天性の無痛症(congenital insensitivity to pain, CIP)]]や[[wikipedia:erythromelalgia|先端紅痛症(erythromelalgia, IEM)]]、[[wikipedia:paroxysmal extreme pain disorder|発作性の神経痛(paroxysmal extreme pain disorder, PEPD)]]に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に[[wikipedia:ja:終止コドン|終止コドン]]が挿入され、チャネルとしての機能を喪失することが分かっている17。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、[[閾値]]が低くなり活動電位が生じやすくなる17。PEPDの患者では速い不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルは速い不活性化が起こる膜電位が高い電位にシフトする。そのため低い膜電位でも電気的に興奮しやすくなり、PEPDの症状が現れると考えられている17。
 中枢神経系で発現しているNav1.1の変異は[[てんかん]]の原因になる。これまで、[[wikipedia:Generalized epilepsy with febrile seizures plus|全般てんかん熱性痙攣プラス(generalized epilepsy with febrile seizures plus, GEFS+)]]および[[wikipedia:SMEI|乳児重症ミオクロニーてんかん(severe myoclonic epilepsy of infant, SMEI)]]を引き起こすNav1.1の変異が多数例、報告されている。不活性化が不完全になり持続的にナトリウム電流が流れるような変異や、不活性化がより高い電位で起こるような変異が報告されている。またGEFS+を引き起こす変異は&beta;1サブユニットにも見だされ、この変異を持った&beta;サブユニットは、&alpha;サブユニットの機能の調整をすることができない15 16。 侵害受容に関わる[[wikipedia:sensory neuron|一次知覚ニューロン]]に発現しているNav1.7の変異は、[[wikipedia:ja:先天性無痛無汗症|先天性の無痛症(congenital insensitivity to pain, CIP)]]や[[wikipedia:erythromelalgia|先端紅痛症(erythromelalgia, IEM)]]、[[wikipedia:paroxysmal extreme pain disorder|発作性の神経痛(paroxysmal extreme pain disorder, PEPD)]]に関わっている。これまで知られているCIPを引き起こす変異はすべてNav1.7をコードする遺伝子の途中に[[wikipedia:ja:終止コドン|終止コドン]]が挿入され、チャネルとしての機能を喪失することが分かっている17。またIEMでは遺伝子の変異により、低い電位でナトリウムチャネルが開口するため、[[閾値]]が低くなり活動電位が生じやすくなる17。PEPDの患者では速い不活性化に関わっているリピートIIIとIVの間に変異が見つかっている。この変異を持ったナトリウムチャネルは速い不活性化が起こる膜電位が高い電位にシフトする。そのため低い膜電位でも電気的に興奮しやすくなり、PEPDの症状が現れると考えられている17。
<references/>
79

回編集