「ヒストンアセチル基転移酵素」の版間の差分

編集の要約なし
タグ: リダイレクト解除
編集の要約なし
1行目: 1行目:
内田 周作 (京都大学大学院医学研究科)
内田 周作 (京都大学大学院医学研究科)
英: histone acetyltransferase
略称: HAT
{{box|text= ヒストンアセチル基転移酵素は、アセチルCoAからアセチル基を転移して、ヒストンタンパク質のリジン残基にアセチル基を結合させる酵素。一般的に、ヒストンのアセチル化は遺伝子発現の活性化と関連する。}}


ヒストンアセチル基転移酵素(英: histone acetyltransferase、略称: HAT)は、アセチルCoAからアセチル基を転移して、ヒストンタンパク質のリジン残基にアセチル基を結合させる酵素。一般的に、ヒストンのアセチル化は遺伝子発現の活性化と関連する。
== ヒストンアセチル基転移酵素とは ==
 ヒストンタンパク質はリジンやアルギニン残基を豊富に含む塩基性の高いタンパク質で、ゲノムDNAが巻きつくことでヌクレオソームと呼ばれる構造単位を作り出している。ヒストンには、H1/H5(リンカーヒストン)、H2、H3、およびH4(コアヒストン)の5つのファミリーがある。ヌクレオソームは、2つのH2A-H2B二量体と1つのH3-H4四量体から形成されている。ヒストンタンパク質に対する化学修飾の1つにリジン残基のアセチル化がある。ヒストンタンパク質のリジン残基のアセチル化は、リジンの正電荷を中性化し、ヒストンとDNAの間の静電引力を弱めることでDNAを部分的に解くことができ、これにより転写活性化因子がリクルートされるため、遺伝子発現の活性化と関連している。ヒストンタンパク質のリジン残基のアセチル化を担う酵素を総称してHATと呼んでいる。HATの主な標的はヒストンH3とH4であるが、ヒストンH2AとH2Bもアセチル化されることが知られている<ref name=Sun2013><pubmed>22692567</pubmed></ref> 。ヒストンH3の9番、14番、18番、23番目のリジン残基、ヒストンH4の5番、8番、12番、16番目のリジン残基は全てアセチル化の標的となる <ref name=Roth2001><pubmed>11395403</pubmed></ref><ref name=Sun2013><pubmed>22692567</pubmed></ref> 。ヒストンH2Aでは5番と9番目リジン残基、ヒストンH2Bでは5番、12番、15番、20番目のリジン残基がアセチル化される<ref name=Roth2001><pubmed>11395403</pubmed></ref><ref name=Sun2013><pubmed>22692567</pubmed></ref> 。


• 概要
== 分類 ==
ヒストンタンパク質はリジンやアルギニン残基を豊富に含む塩基性の高いタンパク質で、ゲノムDNAが巻きつくことでヌクレオソームと呼ばれる構造単位を作り出している。ヒストンには、H1/H5(リンカーヒストン)、H2、H3、およびH4(コアヒストン)の5つのファミリーがある。ヌクレオソームは、2つのH2A-H2B二量体と1つのH3-H4四量体から形成されている。ヒストンタンパク質に対する化学修飾の1つにリジン残基のアセチル化がある。ヒストンタンパク質のリジン残基のアセチル化は、リジンの正電荷を中性化し、ヒストンとDNAの間の静電引力を弱めることでDNAを部分的に解くことができ、これにより転写活性化因子がリクルートされるため、遺伝子発現の活性化と関連している。ヒストンタンパク質のリジン残基のアセチル化を担う酵素を総称してHATと呼んでいる。HATの主な標的はヒストンH3とH4であるが、ヒストンH2AとH2Bもアセチル化されることが知られている<ref name=Sun2013><pubmed>22692567</pubmed></ref> 。ヒストンH3の9番、14番、18番、23番目のリジン残基、ヒストンH4の5番、8番、12番、16番目のリジン残基は全てアセチル化の標的となる <ref name=Roth2001><pubmed>11395403</pubmed></ref><ref name=Sun2013><pubmed>22692567</pubmed></ref> 。ヒストンH2Aでは5番と9番目リジン残基、ヒストンH2Bでは5番、12番、15番、20番目のリジン残基がアセチル化される<ref name=Roth2001><pubmed>11395403</pubmed></ref><ref name=Sun2013><pubmed>22692567</pubmed></ref>
 現在までにヒトでは37種類のHATが同定されている<ref name=Sheikh2019><pubmed>30390049</pubmed></ref> 。HATはその細胞内局在に基づいて核局在型のタイプAと細胞質局在型のタイプBの2つのクラスに大別されている。


• 分類
 タイプAのHATは、主に5つのファミリーに分類されている。1) Gcn5関連N-アセチルトランスフェラーゼ(GNAT)、2) CBP/p300、3) MOZ、酵母YBF2、SAS2、TIP60(MYST)、4) 転写因子関連HAT、5) 核受容体関連HATがある。これらタイプAのHATはブロモドメインを含んでおり、ヒストンのリジン残基をアセチル化することによって遺伝子発現の調節に関与している。
現在までにヒトでは37種類のHATが同定されている<ref name=Sheikh2019><pubmed>30390049</pubmed></ref> 。HATはその細胞内局在に基づいて核局在型のタイプAと細胞質局在型のタイプBの2つのクラスに大別されている。タイプAのHATは、主に5つのファミリーに分類されている。1) Gcn5関連N-アセチルトランスフェラーゼ(GNAT)、2) CBP/p300、3) MOZ、酵母YBF2、SAS2、TIP60(MYST)、4) 転写因子関連HAT、5) 核受容体関連HATがある。これらタイプAのHATはブロモドメインを含んでおり、ヒストンのリジン残基をアセチル化することによって遺伝子発現の調節に関与している。一方、タイプBのHATは細胞質に存在し、新しく合成されたヒストンをヌクレオソームに組み込む前にアセチル化する。タイプBのHATによってヒストンに付加されたアセチル基は、核に移行してヒストン脱アセチル化酵素(HDAC)によって脱アセチル化される。Hat1は、タイプBのHATの数少ない例の1つである。しかし、このようなHATの分類がなされているものの、核・細胞質の両方で機能するなど、特定のクラスに分類できないHATがあることに留意されたい。以下に主なHATファミリーについて記載する。


GNATファミリー
 一方、タイプBのHATは細胞質に存在し、新しく合成されたヒストンをヌクレオソームに組み込む前にアセチル化する。タイプBのHATによってヒストンに付加されたアセチル基は、核に移行してヒストン脱アセチル化酵素(HDAC)によって脱アセチル化される。Hat1は、タイプBのHATの数少ない例の1つである。しかし、このようなHATの分類がなされているものの、核・細胞質の両方で機能するなど、特定のクラスに分類できないHATがあることに留意されたい。以下に主なHATファミリーについて記載する。
GNATファミリーの主要メンバーには、最初に同定されたgeneral control of amino acid synthesis 5 (Gcn5)に加えてelongation protein 3 (ELP3)、p300/CBP-associated factor (PCAF)、chromodomain on chromosome Y protein、establishment of cohesion 1、establishment of cohesion 1 homolog 1、establishment of cohesion 1 homolog 2(establishment of cohesion 1 homolog 1のパラログ)、ADA-two-A containing 2、mechanosensory abnormal 17などが含まれる。これらのHATにはブロモドメインが存在し、ヒストンH2B、H3、H4のリジン残基をアセチル化することが示されている<ref name=Lee2007><pubmed>17380162</pubmed></ref> 。


MYSTファミリー
=== GNATファミリー ===
MYSTファミリーには、Tip60、MOZ、MOF、MORF、およびHBO1が含まれる。これらのHATには、カノニカルなアセチルCoA結合部位とC2HC型ジンクフィンガーモチーフを持つ240アミノ酸長のMYST領域がある。MYSTファミリーのほとんどのHATは、タンパク質-タンパク質相互作用に関与するクロモドメインを有している。構造的なアライメントは、これらのクロモドメインがカノニカルなポリコンブ関連クロモドメインとわずかに異なることを示唆している<ref name=Sanjuan2001><pubmed>11230534</pubmed></ref> 。MYSTファミリーのHATは、ヒストンH2A、H3、H4のリジン残基をアセチル化することが知られている。
 GNATファミリーの主要メンバーには、最初に同定されたgeneral control of amino acid synthesis 5 (Gcn5)に加えてelongation protein 3 (ELP3)、p300/CBP-associated factor (PCAF)、chromodomain on chromosome Y protein、establishment of cohesion 1、establishment of cohesion 1 homolog 1、establishment of cohesion 1 homolog 2(establishment of cohesion 1 homolog 1のパラログ)、ADA-two-A containing 2、mechanosensory abnormal 17などが含まれる。これらのHATにはブロモドメインが存在し、ヒストンH2B、H3、H4のリジン残基をアセチル化することが示されている<ref name=Lee2007><pubmed>17380162</pubmed></ref>


CBP/p300
=== MYSTファミリー ===
CBPとp300はCBP/p300ファミリーのパラログである。CBPとp300の主要なタンパク質相互作用ドメインは、核受容体相互作用ドメイン、CREBおよびMYB相互作用ドメイン、KIXドメイン(Ser133-リン酸化型CREB)、システイン/ヒスチジン領域(CH1およびCH3)、インターフェロン応答結合ドメインである<ref name=Livengood2002><pubmed>11782467</pubmed></ref> 。CBP/p300は、アセチルトランスフェラーゼドメイン、ブロモドメイン、プラントホメオドメインタイプのジンクフィンガーモチーフを持っている。CBP/p300はヒストン以外にも多くの基質を有している。
 MYSTファミリーには、Tip60、MOZ、MOF、MORF、およびHBO1が含まれる。これらのHATには、カノニカルなアセチルCoA結合部位とC2HC型ジンクフィンガーモチーフを持つ240アミノ酸長のMYST領域がある。MYSTファミリーのほとんどのHATは、タンパク質-タンパク質相互作用に関与するクロモドメインを有している。構造的なアライメントは、これらのクロモドメインがカノニカルなポリコンブ関連クロモドメインとわずかに異なることを示唆している<ref name=Sanjuan2001><pubmed>11230534</pubmed></ref> 。MYSTファミリーのHATは、ヒストンH2A、H3、H4のリジン残基をアセチル化することが知られている。


・機能
=== CBP/p300 ===
触媒活性
 CBPとp300はCBP/p300ファミリーのパラログである。CBPとp300の主要なタンパク質相互作用ドメインは、核受容体相互作用ドメイン、CREBおよびMYB相互作用ドメイン、KIXドメイン(Ser133-リン酸化型CREB)、システイン/ヒスチジン領域(CH1およびCH3)、インターフェロン応答結合ドメインである<ref name=Livengood2002><pubmed>11782467</pubmed></ref> 。CBP/p300は、アセチルトランスフェラーゼドメイン、ブロモドメイン、プラントホメオドメインタイプのジンクフィンガーモチーフを持っている。CBP/p300はヒストン以外にも多くの基質を有している。
HATの活性は、自己アセチル化、細胞内シグナル、細胞内代謝系など様々なメカニズムによって調節されると考えられている。自己アセチル化は、ヒストンタンパク質リジン残基のアセチル化を介して酵素活性が調節されることを意味する。Tip60は最初に自己アセチル化が報告されたHATで、MYSTドメインの活性部位である327番目のリジン残基のアセチル化は酵素活性の重要な調節マーカーとして機能する。p300/CBP-associated factor(PCAF)の自己アセチル化は、核局在化シグナルの5つのリジン残基を特異的にターゲットとする。自己アセチル化されたPCAFは核に局在し、遺伝子発現を活性化する。一方、脱アセチル化されたPCAFは、アポトーシス細胞の細胞質に主に存在していることから、PCAFの自己アセチル化による転写誘導が細胞の生存に関わることが示唆されている<ref name=Blanco1998><pubmed>9620851</pubmed></ref> 。同様に、p300およびCBPの活性も自己アセチル化を介して調節される<ref name=Thompson2004><pubmed>15004546</pubmed></ref> 。CBPによるアセチル化は、カルシウムイオンやcAMPなどのセカンドメッセンジャー経路の下流に存在するリン酸化カスケードなどのシグナル伝達経路によって調節されることで酵素活性に影響を与える<ref name=Bengtson2012><pubmed>22351065</pubmed></ref><ref name=Vo2001><pubmed>11279224</pubmed></ref> 。


神経発達における役割
== 機能 ==
CBP/p300が神経発生において重要であることを示す研究がいくつかある。これらHATの遺伝子欠損マウスにおいて、神経発生の初期段階であるE9.0からE11.5で胚性致死となることが報告されており、造血、血管新生、心臓、肺、および腸臓器形成が障害されている<ref name=Kung2000><pubmed>10673499</pubmed></ref><ref name=Oike1999><pubmed>9949198</pubmed></ref><ref name=Shikama2003><pubmed>14517255</pubmed></ref><ref name=Yao1998><pubmed>9590171</pubmed></ref> 。マウス発生過程でのp300メッセンジャーRNA(mRNA)は、神経組織での発現が高いことが示されており、p300が神経発生に関与していることを示唆している。事実、CBPまたはp300をノックアウトすると神経管の異常が生じ、twist、paired box 3(PAX3)、およびactivating enhancer binding protein 2(AP2)などの他の転写因子に影響を与えることで、神経発生に障害を及ぼすことが示されている<ref name=Tanaka2000><pubmed>10906457</pubmed></ref><ref name=Yao1998><pubmed>9590171</pubmed></ref> 。
=== 触媒活性 ===
 HATの活性は、自己アセチル化、細胞内シグナル、細胞内代謝系など様々なメカニズムによって調節されると考えられている。自己アセチル化は、ヒストンタンパク質リジン残基のアセチル化を介して酵素活性が調節されることを意味する。Tip60は最初に自己アセチル化が報告されたHATで、MYSTドメインの活性部位である327番目のリジン残基のアセチル化は酵素活性の重要な調節マーカーとして機能する。p300/CBP-associated factor(PCAF)の自己アセチル化は、核局在化シグナルの5つのリジン残基を特異的にターゲットとする。自己アセチル化されたPCAFは核に局在し、遺伝子発現を活性化する。一方、脱アセチル化されたPCAFは、アポトーシス細胞の細胞質に主に存在していることから、PCAFの自己アセチル化による転写誘導が細胞の生存に関わることが示唆されている<ref name=Blanco1998><pubmed>9620851</pubmed></ref> 。同様に、p300およびCBPの活性も自己アセチル化を介して調節される<ref name=Thompson2004><pubmed>15004546</pubmed></ref> 。CBPによるアセチル化は、カルシウムイオンやcAMPなどのセカンドメッセンジャー経路の下流に存在するリン酸化カスケードなどのシグナル伝達経路によって調節されることで酵素活性に影響を与える<ref name=Bengtson2012><pubmed>22351065</pubmed></ref><ref name=Vo2001><pubmed>11279224</pubmed></ref> 。


シナプス可塑性における役割
=== 神経発達における役割 ===
マウス海馬CA1領域におけるヒストンH3のアセチル化は文脈学習後に亢進し、このヒストンアセチル化の上昇は、N-メチル-D-アスパラギン酸受容体(NMDA受容体)とERKシグナル伝達経路の両方の活性化と関連している<ref name=Levenson2004><pubmed>15273246</pubmed></ref> 。2010年、Pelegらは、ゲノムワイド解析により、ヒストンH4の12番目のリジン残基(H4K12)のアセチル化が長期記憶形成に必須の転写活性化と関連していることを見出した<ref name=Peleg2010><pubmed>20448184</pubmed></ref> 。多くの可塑性関連遺伝子(cFosやBdnf遺伝子)の発現上昇も、CBPなどのHAT活性の増加に関連して同定されている。マウス前脳特異的CBP欠損マウスは、長期記憶形成の障害、シナプス可塑性の障害、シナプス機能や可塑性に関与する遺伝子の発現低下を示した<ref name=Korzus2004><pubmed>15207240</pubmed></ref> 。別の研究においても、CBPノックアウトマウス(ヘテロ型)において、海馬依存性の学習と記憶課題の障害や、学習・記憶に関わるとされる長期増強(LTP)の低下が報告されている<ref name=Alarcon2004><pubmed>15207239</pubmed></ref> 。これらの知見から、CBPは、特に学習・記憶やシナプス可塑性において重要な役割を担っていることが示唆されている。
 CBP/p300が神経発生において重要であることを示す研究がいくつかある。これらHATの遺伝子欠損マウスにおいて、神経発生の初期段階であるE9.0からE11.5で胚性致死となることが報告されており、造血、血管新生、心臓、肺、および腸臓器形成が障害されている<ref name=Kung2000><pubmed>10673499</pubmed></ref><ref name=Oike1999><pubmed>9949198</pubmed></ref><ref name=Shikama2003><pubmed>14517255</pubmed></ref><ref name=Yao1998><pubmed>9590171</pubmed></ref> 。マウス発生過程でのp300メッセンジャーRNA(mRNA)は、神経組織での発現が高いことが示されており、p300が神経発生に関与していることを示唆している。事実、CBPまたはp300をノックアウトすると神経管の異常が生じ、twist、paired box 3(PAX3)、およびactivating enhancer binding protein 2(AP2)などの他の転写因子に影響を与えることで、神経発生に障害を及ぼすことが示されている<ref name=Tanaka2000><pubmed>10906457</pubmed></ref><ref name=Yao1998><pubmed>9590171</pubmed></ref>
  MYSTファミリーのTip60は、転写調節、DNA修復、クロマチンリモデリングを含む様々な細胞機能において重要な役割を果たすHATである。Tip60は、記憶形成やシナプス可塑性に関与していることが示唆されている。海馬においてTip60をノックダウンしたマウスは、H4K12アセチル化レベルの低下、長期記憶形成の阻害、長期増強(LTP)の維持に障害を認めた<ref name=Uchida2017><pubmed>28076781</pubmed></ref> 。ショウジョウバエにおいて、Tip60とGNATファミリーのGcn5は長期記憶の維持に必要であることが示されている<ref name=Hirano2016><pubmed>27841260</pubmed></ref> 。このように、HATによるヒストンアセチル化が記憶形成やシナプス可塑性に重要な役割を果たすことが示唆されている。


• 疾患との関わり
=== シナプス可塑性における役割 ===
神経変性疾患においてHAT活性およびヒストンタンパク質のアセチル化の障害が報告されており、認知機能の低下や運動障害との関連が示唆されている。CBPがpolyQ凝集体に存在することが示され、神経変性疾患との関連が想定されている<ref name=Kazantsev1999><pubmed>10500189</pubmed></ref> 。事実、CAGリピートの異常な伸長はCBPやPCAFを含む転写制御因子の機能低下を誘発し、遺伝子発現の低下が示されている<ref name=Steffan2001><pubmed>11607033</pubmed></ref> 。ハンチントン病モデルマウス及び患者脳において、CBPを介した転写活性化異常の存在が示唆されている<ref name=Wilburn2011><pubmed>21555070</pubmed></ref>
 マウス海馬CA1領域におけるヒストンH3のアセチル化は文脈学習後に亢進し、このヒストンアセチル化の上昇は、N-メチル-D-アスパラギン酸受容体(NMDA受容体)とERKシグナル伝達経路の両方の活性化と関連している<ref name=Levenson2004><pubmed>15273246</pubmed></ref> 。2010年、Pelegらは、ゲノムワイド解析により、ヒストンH4の12番目のリジン残基(H4K12)のアセチル化が長期記憶形成に必須の転写活性化と関連していることを見出した<ref name=Peleg2010><pubmed>20448184</pubmed></ref> 。多くの可塑性関連遺伝子(cFosやBdnf遺伝子)の発現上昇も、CBPなどのHAT活性の増加に関連して同定されている。マウス前脳特異的CBP欠損マウスは、長期記憶形成の障害、シナプス可塑性の障害、シナプス機能や可塑性に関与する遺伝子の発現低下を示した<ref name=Korzus2004><pubmed>15207240</pubmed></ref> 。別の研究においても、CBPノックアウトマウス(ヘテロ型)において、海馬依存性の学習と記憶課題の障害や、学習・記憶に関わるとされる長期増強(LTP)の低下が報告されている<ref name=Alarcon2004><pubmed>15207239</pubmed></ref> 。これらの知見から、CBPは、特に学習・記憶やシナプス可塑性において重要な役割を担っていることが示唆されている。
CBP/p300は発生において重要な酵素であり、これらHATの突然変異や欠失は、知的障害などの症状を呈するRubinstein-Taybi症候群との関連が示唆されている<ref name=Kalkhoven2003><pubmed>12566391</pubmed></ref>
筋萎縮性側索硬化症マウスモデル(SOD1 G86R)では、腰部脊髄コリン作動性運動ニューロンにおいてCBPの減少とヒストンH3アセチル化の減少が見出されている<ref name=Rouaux2003><pubmed>14657026</pubmed></ref> 。
 MYSTファミリーのTip60は、転写調節、DNA修復、クロマチンリモデリングを含む様々な細胞機能において重要な役割を果たすHATである。Tip60は、記憶形成やシナプス可塑性に関与していることが示唆されている。海馬においてTip60をノックダウンしたマウスは、H4K12アセチル化レベルの低下、長期記憶形成の阻害、長期増強(LTP)の維持に障害を認めた<ref name=Uchida2017><pubmed>28076781</pubmed></ref> 。ショウジョウバエにおいて、Tip60とGNATファミリーのGcn5は長期記憶の維持に必要であることが示されている<ref name=Hirano2016><pubmed>27841260</pubmed></ref> 。このように、HATによるヒストンアセチル化が記憶形成やシナプス可塑性に重要な役割を果たすことが示唆されている。
野生型Presenilin 1(PS1)はCBPとp300の転写活性能を促進するが、家族性アルツハイマー病関連遺伝子のPS1変異はこの効果を示さなかったことから、CBP/p300とアルツハイマー病との関連が示唆されている<ref name=Francis2007><pubmed>17197080</pubmed></ref> 。アルツハイマー病モデルマウスにおいて、CBPの発現誘導はBdnfの発現亢進を介して記憶学習能力を回復させることが示されている<ref name=Caccamo2010><pubmed>21149712</pubmed></ref> 。また、CBP/p300の内因性阻害分子であるEID1は、AD患者の海馬において細胞質から核へ移行すること、EID1の過剰発現は、ヒストンH3のアセチル化の低下、海馬におけるLTPの低下、空間記憶障害を引き起こすことが示された。この結果はCBP/p300がアルツハイマー病態に関わることを示唆している<ref name=Liu2012><pubmed>22186421</pubmed></ref> 。
CBP/p300以外のHATと脳疾患との関連研究はまだ少なく、今後の解析が待たれる。
本稿ではHATsの脳機能に対する役割と神経疾患との関連についてごく一部の例を取り上げたが、他にも多くの報告があることに留意されたい。


• 関連語
== 疾患との関わり ==
ヒストン、クロマチン、エピジェネティクス、遺伝子発現、神経可塑性、ヒストン脱アセチル化酵素
 神経変性疾患においてHAT活性およびヒストンタンパク質のアセチル化の障害が報告されており、認知機能の低下や運動障害との関連が示唆されている。CBPがpolyQ凝集体に存在することが示され、神経変性疾患との関連が想定されている<ref name=Kazantsev1999><pubmed>10500189</pubmed></ref> 。事実、CAGリピートの異常な伸長はCBPやPCAFを含む転写制御因子の機能低下を誘発し、遺伝子発現の低下が示されている<ref name=Steffan2001><pubmed>11607033</pubmed></ref> 。ハンチントン病モデルマウス及び患者脳において、CBPを介した転写活性化異常の存在が示唆されている<ref name=Wilburn2011><pubmed>21555070</pubmed></ref> 。


参考文献
 CBP/p300は発生において重要な酵素であり、これらHATの突然変異や欠失は、知的障害などの症状を呈するRubinstein-Taybi症候群との関連が示唆されている<ref name=Kalkhoven2003><pubmed>12566391</pubmed></ref> 。
 
 筋萎縮性側索硬化症マウスモデル(SOD1 G86R)では、腰部脊髄コリン作動性運動ニューロンにおいてCBPの減少とヒストンH3アセチル化の減少が見出されている<ref name=Rouaux2003><pubmed>14657026</pubmed></ref> 。
 
 野生型Presenilin 1(PS1)はCBPとp300の転写活性能を促進するが、家族性アルツハイマー病関連遺伝子のPS1変異はこの効果を示さなかったことから、CBP/p300とアルツハイマー病との関連が示唆されている<ref name=Francis2007><pubmed>17197080</pubmed></ref> 。アルツハイマー病モデルマウスにおいて、CBPの発現誘導はBdnfの発現亢進を介して記憶学習能力を回復させることが示されている<ref name=Caccamo2010><pubmed>21149712</pubmed></ref> 。また、CBP/p300の内因性阻害分子であるEID1は、AD患者の海馬において細胞質から核へ移行すること、EID1の過剰発現は、ヒストンH3のアセチル化の低下、海馬におけるLTPの低下、空間記憶障害を引き起こすことが示された。この結果はCBP/p300がアルツハイマー病態に関わることを示唆している<ref name=Liu2012><pubmed>22186421</pubmed></ref> 。
 
 CBP/p300以外のHATと脳疾患との関連研究はまだ少なく、今後の解析が待たれる。
 
== 関連語 ==
ヒストン
クロマチン
エピジェネティクス
遺伝子発現
神経可塑性
ヒストン脱アセチル化酵素
ヒストンメチル基転移酵素
ヒストン脱メチル化酵素
 
== 参考文献 ==