「マイクロカラム」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
16行目: 16行目:
 大脳皮質第5層の二種類の主要な興奮性細胞のうちの一種は[[皮質下投射細胞]](subcortical projection neurons, SCPNs)と呼ばれ、[[脊髄]]、[[上丘]]、[[橋]]などへ長い[[軸索]]を伸ばし大脳皮質からの主要な出力経路を形成する<ref><pubmed>24105342</pubmed></ref>9。皮質下投射細胞は広範な皮質領野に存在しており、例えば[[運動野]]の皮質下投射細胞は[[上位運動ニューロン]]として[[皮質脊髄路]]を形成している。
 大脳皮質第5層の二種類の主要な興奮性細胞のうちの一種は[[皮質下投射細胞]](subcortical projection neurons, SCPNs)と呼ばれ、[[脊髄]]、[[上丘]]、[[橋]]などへ長い[[軸索]]を伸ばし大脳皮質からの主要な出力経路を形成する<ref><pubmed>24105342</pubmed></ref>9。皮質下投射細胞は広範な皮質領野に存在しており、例えば[[運動野]]の皮質下投射細胞は[[上位運動ニューロン]]として[[皮質脊髄路]]を形成している。


 皮質下投射細胞は幅1–2細胞、高さ数細胞程度の細長いクラスター(SCPNマイクロカラム)を形成する<ref name=Maruoka2011><pubmed>22171052 </pubmed></ref><ref name=Kwan2012><pubmed>22579290 </pubmed></ref><ref name=Maruoka2017><pubmed> 29097542 </pubmed></ref>10–12('''図1''')。皮質に沿って多数の皮質下投射細胞マイクロカラムが周期的に配置し、ハニカム状の六方格子配列をとっている12。このような皮質下投射細胞マイクロカラムはマウスの[[視覚野]]、[[体性感覚野]]、運動野<ref name=Maruoka2011/> <ref name=Maruoka2017/>10, 12や[[wj:ヒト|ヒト]][[言語野]]<u>(編集部コメント:言語野には運動性言語野と感覚性言語野があるのでどちらかご記述ください)</u>><ref name=Kwan2012/>11で共通にみられ、いずれもよく似た構造を持つ。
 皮質下投射細胞は幅1–2細胞、高さ数細胞程度の細長いクラスター(SCPNマイクロカラム)を形成する<ref name=Maruoka2011><pubmed>22171052 </pubmed></ref><ref name=Kwan2012><pubmed>22579290 </pubmed></ref><ref name=Maruoka2017><pubmed> 29097542 </pubmed></ref>10–12('''図1''')。皮質に沿って多数の皮質下投射細胞マイクロカラムが周期的に配置し、ハニカム状の六方格子配列をとっている12。このような皮質下投射細胞マイクロカラムはマウスの[[視覚野]]、[[体性感覚野]]、運動野<ref name=Maruoka2011/><ref name=Maruoka2017/>10, 12や[[wj:ヒト|ヒト]][[言語野]]<u>(編集部コメント:言語野には運動性言語野と感覚性言語野があるのでどちらかご記述ください)</u>><ref name=Kwan2012/>11で共通にみられ、いずれもよく似た構造を持つ。


 第5層のもう一種の興奮性細胞である皮質投射細胞(cortical projection neuron, CPNs)は、同側や対側の大脳皮質に軸索を投射し中継経路を形成している9。これらの皮質投射細胞もマイクロカラム(CPNマイクロカラム)を形成し、SCPNマイクロカラムと互い違いに並んでいる('''図1''')<ref name=Maruoka2017/>12。
 第5層のもう一種の興奮性細胞である皮質投射細胞(cortical projection neuron, CPNs)は、同側や対側の大脳皮質に軸索を投射し中継経路を形成している9。これらの皮質投射細胞もマイクロカラム(CPNマイクロカラム)を形成し、SCPNマイクロカラムと互い違いに並んでいる('''図1''')<ref name=Maruoka2017/>12。
25行目: 25行目:


== 回路と神経活動 ==
== 回路と神経活動 ==
 [[マウス]]脳内[[Ca2+イメージング|Ca<sup>2+</sup>イメージング]]によって、同一のマイクロカラムに含まれる細胞は同期した神経活動を示し、活動の時間パターンが似ていることが明らかとなった12。この同期活動は、視覚野、体性感覚野、運動野のSCPNマイクロカラムで共通にみられた。
 [[マウス]]脳内[[Ca2+イメージング|Ca<sup>2+</sup>イメージング]]によって、同一のマイクロカラムに含まれる細胞は同期した神経活動を示し、活動の時間パターンが似ていることが明らかとなった<ref name=Maruoka2017/>12。この同期活動は、視覚野、体性感覚野、運動野のSCPNマイクロカラムで共通にみられた。


 [[第一次視覚野]]の細胞は特定の傾き(方位)をもった線分に選択的に応答し([[方位選択性]])、また左右の眼への選択性([[眼優位性]])がさまざまに異なることが知られている。マウス第一次視覚野における解析により、同一マイクロカラム内の細胞は方位選択性と眼優位性のいずれもが似ていることが明らかとなった10, 12。
 [[第一次視覚野]]の細胞は特定の傾き(方位)をもった線分に選択的に応答し([[方位選択性]])、また左右の眼への選択性([[眼優位性]])がさまざまに異なることが知られている。マウス第一次視覚野における解析により、同一マイクロカラム内の細胞は方位選択性と眼優位性のいずれもが似ていることが明らかとなった<ref name=Maruoka2011/><ref name=Maruoka2017/>10, 12。


 また、電気生理学的な解析から、同じマイクロカラムに含まれる神経細胞は同一の神経細胞からのシナプス入力を受けていることが示唆され12、この入力が同期活動や刺激選択性の類似をもたらしている可能性が示された。以上より、個々のマイクロカラムはそれぞれ特定の情報を処理し、幅広い脳領野の共通な機能単位として動作していることが示唆された。
 また、電気生理学的な解析から、同じマイクロカラムに含まれる神経細胞は同一の神経細胞からのシナプス入力を受けていることが示唆され<ref name=Maruoka2017/>12、この入力が同期活動や刺激選択性の類似をもたらしている可能性が示された。以上より、個々のマイクロカラムはそれぞれ特定の情報を処理し、幅広い脳領野の共通な機能単位として動作していることが示唆された。


== 発生 ==
== 発生 ==
 大脳皮質の発生においては、興奮性細胞は皮質の脳室側で[[放射状グリア]]の不等分裂によって産み出され、脳表の方向へ放射状に移動し最終的な位置に配置する。この際、同一あるいは発生上近縁の放射状グリアから産み出された興奮性神経細胞(発生上近縁な興奮性神経細胞)は柱状に並ぶ傾向がある。一方、個々のマイクロカラムを構成する細胞は発生上近縁ではないことが示されている10ため、発生上近縁な細胞が並ぶというモデルではマイクロカラムの形成は説明できないと考えられる。
 大脳皮質の発生においては、興奮性細胞は皮質の脳室側で[[放射状グリア]]の不等分裂によって産み出され、脳表の方向へ放射状に移動し最終的な位置に配置する。この際、同一あるいは発生上近縁の放射状グリアから産み出された興奮性神経細胞(発生上近縁な興奮性神経細胞)は柱状に並ぶ傾向がある。一方、個々のマイクロカラムを構成する細胞は発生上近縁ではないことが示されている<ref name=Maruoka2011/>10ため、発生上近縁な細胞が並ぶというモデルではマイクロカラムの形成は説明できないと考えられる。


 マイクロカラムはマウスでは遅くとも生後6–7日には観察される。この時期にはまだ[[化学シナプス]]は皮質内には少ない。一方、この時期に、近傍にある皮質下投射細胞と皮質下投射細胞の間および皮質投射細胞と皮質投射細胞の間はそれぞれ50%以上の確率で[[ギャップ結合]]により結合している12。このギャップ結合は縦に並んだ細胞で高い強度を示し、同一マイクロカラム内の細胞を強く結合していることが示唆されている。一方、皮質下投射細胞と皮質投射細胞の間にはギャップ結合はほとんど見られない12。皮質下投射細胞間、皮質投射細胞間のいずれのギャップ結合も皮質回路が概ね完成する生後14日頃までには完全に消失する12。
 マイクロカラムはマウスでは遅くとも生後6–7日には観察される。この時期にはまだ[[化学シナプス]]は皮質内には少ない。一方、この時期に、近傍にある皮質下投射細胞と皮質下投射細胞の間および皮質投射細胞と皮質投射細胞の間はそれぞれ50%以上の確率で[[ギャップ結合]]により結合している<ref name=Maruoka2017/>12。このギャップ結合は縦に並んだ細胞で高い強度を示し、同一マイクロカラム内の細胞を強く結合していることが示唆されている。一方、皮質下投射細胞と皮質投射細胞の間にはギャップ結合はほとんど見られない<ref name=Maruoka2017/>12。皮質下投射細胞間、皮質投射細胞間のいずれのギャップ結合も皮質回路が概ね完成する生後14日頃までには完全に消失する<ref name=Maruoka2017/>12。


 以上より、マイクロカラムは発生上近縁でない細胞が配置することにより形成され、一時的にギャップ結合で結合することが明らかとなった。このギャップ結合は皮質回路が形成される時期に存在するため、マイクロカラム特異的な神経回路の形成を誘導している可能性がある。
 以上より、マイクロカラムは発生上近縁でない細胞が配置することにより形成され、一時的にギャップ結合で結合することが明らかとなった。このギャップ結合は皮質回路が形成される時期に存在するため、マイクロカラム特異的な神経回路の形成を誘導している可能性がある。
44行目: 44行目:
 大脳皮質の発生において、マイクロカラムに似た細いカラム状のクラスターがギャップ結合を形成している可能性を示唆する報告が1990年代にあった14, 15。第5層におけるこのクラスターがマイクロカラムと一致している可能性がある。ギャップ結合で結合したクラスターは第5層以外の皮質層にも観察されているため、これらの層にもマイクロカラムに類似した構造が存在する可能性がある。
 大脳皮質の発生において、マイクロカラムに似た細いカラム状のクラスターがギャップ結合を形成している可能性を示唆する報告が1990年代にあった14, 15。第5層におけるこのクラスターがマイクロカラムと一致している可能性がある。ギャップ結合で結合したクラスターは第5層以外の皮質層にも観察されているため、これらの層にもマイクロカラムに類似した構造が存在する可能性がある。


 マイクロカラムは発生上近縁でない細胞から形成されている10。一方、発生上近縁な興奮性細胞は、マイクロカラムでギャップ結合が見られる時期より早い時期に一過的にギャップ結合を持つことが知られている16。発生上近縁な興奮性細胞は後に相互にシナプス結合し類似した視覚応答特性を示す16–18。従って、発生上近縁でない細胞からなるマイクロカラムと、発生上近縁な細胞からなる回路の両方が存在し異なる機能を担っている可能性がある。
 マイクロカラムは発生上近縁でない細胞から形成されている<ref name=Maruoka2011/>10。一方、発生上近縁な興奮性細胞は、マイクロカラムでギャップ結合が見られる時期より早い時期に一過的にギャップ結合を持つことが知られている16。発生上近縁な興奮性細胞は後に相互にシナプス結合し類似した視覚応答特性を示す16–18。従って、発生上近縁でない細胞からなるマイクロカラムと、発生上近縁な細胞からなる回路の両方が存在し異なる機能を担っている可能性がある。


 [[ネコ]]や[[サル]]の視覚野には眼優位性あるいは方位選択性の類似した細胞からなる皮質カラムが存在し、それぞれ眼優位性カラムおよび方位選択性カラムと呼ばれている。眼優位性カラムの幅は細胞数十個分ほどでありマイクロカラムよりはるかに大きい。また、隣り合った方位選択性カラムが応答する刺激方位は似ているが、隣り合ったマイクロカラムが応答する刺激方位は似ていない。
 [[ネコ]]や[[サル]]の視覚野には眼優位性あるいは方位選択性の類似した細胞からなる皮質カラムが存在し、それぞれ眼優位性カラムおよび方位選択性カラムと呼ばれている。眼優位性カラムの幅は細胞数十個分ほどでありマイクロカラムよりはるかに大きい。また、隣り合った方位選択性カラムが応答する刺激方位は似ているが、隣り合ったマイクロカラムが応答する刺激方位は似ていない。