「リアノジン受容体」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
英語名:Ryanodine receptor 英語略名:RyR  
英語名:Ryanodine receptor 英語略名:RyR  


 リアノジン受容体は細胞内[[カルシウム]]貯蔵部位である小胞体膜上に存在するカルシウムチャネルであり、その名は、植物[[wikipedia:ja:アルカロイド|アルカロイド]]である[[wikipedia:ja:リアノジン|リアノジン]]が結合することに由来する。小胞体からのカルシウム放出を担うことから、同じく小胞体膜上に存在するカルシウムチャネルである[[イノシトール1,4,5-三リン酸受容体]](inositol 1,4,5-trisphosphate receptor; IP<sub>3</sub>R)とともに、カルシウム放出チャネルとも呼ばれ、細胞内カルシウム濃度調節に関与する。RyRには三種類のサブタイプが存在し、それぞれ異なった分布を示すが、脳においては三種類全ての発現が見られる。(脳におけるサブタイプ発現の重複、および遺伝子欠損マウスの致死性などにより、脳におけるリアノジン受容体の機能的役割の解明は、十分であるとは言えない。 林コメント:要約ですので、分かっている範囲の事実を御書き頂ければと思います)
 リアノジン受容体は細胞内[[カルシウム]]貯蔵部位である小胞体膜上に存在するカルシウムチャネルであり、その名は、植物[[wikipedia:ja:アルカロイド|アルカロイド]]である[[wikipedia:ja:リアノジン|リアノジン]]が結合することに由来する。小胞体からのカルシウム放出を担うことから、同じく小胞体膜上に存在するカルシウムチャネルである[[イノシトール1,4,5-三リン酸受容体]](inositol 1,4,5-trisphosphate receptor; IP<sub>3</sub>R)とともに、カルシウム放出チャネルとも呼ばれ、細胞内カルシウム濃度調節に関与する。RyRには三種類のサブタイプが存在し、それぞれ異なった分布を示すが、脳においては三種類全ての発現が見られる。また三種類のサブタイプ全てに対して遺伝子欠損マウスが作成されているが、1型RyR欠損マウスは出生致死、2型RyR欠損マウスは胎生致死を示す。3型RyR欠損マウスのみ生後も生存・成熟するため、その解析結果の報告が存在する。


== 歴史 ==
== 歴史 ==


<ref><pubmed>12777839</pubmed></ref> (林コメント:参考文献は、技術上の理由により見出しではなく、本文につけて頂けないでしょうか。以下も同様に御願い致します)
(林コメント:参考文献は、技術上の理由により見出しではなく、本文につけて頂けないでしょうか。以下も同様に御願い致します)
(林コメント:細胞内シグナリングの中でのリアノジン受容体の位置付けのようなものを図示出来ないでしょうか?)
(林コメント:細胞内シグナリングの中でのリアノジン受容体の位置付けのようなものを図示出来ないでしょうか?)


 カルシウムイオン(Ca<sup>2+</sup>)は普遍的かつ基本的な[[シグナル伝達]]を担う[[セカンドメッセンジャー]]であり、極めて多くの生命現象に関与する。細胞内におけるカルシウムシグナル形成は、[[細胞膜]]に存在するカルシウムチャネルを介して細胞外から細胞内へのカルシウムの流入によるものと、細胞内カルシウムストア(小胞体)からカルシウム放出チャネルを介して細胞質へ放出される2通りの経路による。[[カルシウム誘発性カルシウム放出|カルシウム誘発性カルシウム放出]](Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release; CICR)は、[[細胞質]]側のカルシウム濃度上昇が細胞内ストアから細胞質へのカルシウム放出を促進する現象であり、[[wikipedia:ja:骨格筋|骨格筋]]で最初に見出された<ref><pubmed>5456208</pubmed></ref>。その後、同様の現象が多くの[[wikipedia:ja:興奮性細胞|興奮性細胞]]において見られたことから、CICRは細胞内カルシウムシグナルを増幅するための普遍的な機構であると考えられるようになり、CICRの分子実体であるCICRチャネルの薬理学的性質が調べられた。その結果、植物アルカロイドであるリアノジンがCICRチャネルに特異的に結合し、低濃度ではチャネルを開口状態に固定する薬物であることが示された。  
 カルシウムイオン(Ca<sup>2+</sup>)は普遍的かつ基本的な[[シグナル伝達]]を担う[[セカンドメッセンジャー]]であり、極めて多くの生命現象に関与する。細胞内におけるカルシウムシグナル形成は、[[細胞膜]]に存在するカルシウムチャネルを介して細胞外から細胞内へのカルシウムの流入によるものと、細胞内カルシウムストア(小胞体)からカルシウム放出チャネルを介して細胞質へ放出される2通りの経路による。[[カルシウム誘発性カルシウム放出|カルシウム誘発性カルシウム放出]](Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release; CICR)は、[[細胞質]]側のカルシウム濃度上昇が細胞内ストアから細胞質へのカルシウム放出を促進する現象であり、[[wikipedia:ja:骨格筋|骨格筋]]で最初に見出された<ref><pubmed>5456208</pubmed></ref>。その後、同様の現象が多くの[[wikipedia:ja:興奮性細胞|興奮性細胞]]において見られたことから、CICRは細胞内カルシウムシグナルを増幅するための普遍的な機構であると考えられるようになり、CICRの分子実体であるCICRチャネルの薬理学的性質が調べられた。その結果、植物アルカロイドであるリアノジンがCICRチャネルに特異的に結合し、低濃度ではチャネルを開口状態に固定する薬物であることが示された。  


 引き続き、標識リアノジンを用いた結合活性を指標に、骨格筋よりCICRチャネル、即ちリアノジン受容体(RyR)が精製された<ref><pubmed>2448641</pubmed></ref>。その後の遺伝子クローニングにより、少なくとも[[wikipedia:ja:硬骨魚類|硬骨魚類]]以上の[[wikipedia:ja:脊椎動物|脊椎動物]]では、別々の遺伝子にコードされる3種類のRyRサブタイプが存在することが判明し、それぞれ、1型/骨格筋型(RyR1)、2型/心筋型(RyR2)、3型/脳型(RyR3)と呼ばれる<ref><pubmed>9137551</pubmed></ref>。各サブタイプは互いに65%程度のアミノ酸配列相同性を示すが、異なる組織分布・脳内分布を示す<ref><pubmed>1330694</pubmed></ref><ref><pubmed>7876312</pubmed></ref>。一方、[[線虫]]<ref><pubmed>9135117</pubmed></ref>、[[ショウジョウバエ]]<ref><pubmed>8276118</pubmed></ref>においては、どのタイプにも属さないRyR相同物が同定されており、[[wikipedia:ja:無脊椎動物|無脊椎動物]]においては単一遺伝子にコードされていたものが、脊椎動物において組織分布や機能的役割が異なる3種のサブタイプに分子進化したと推測されている。  
 引き続き、標識リアノジンを用いた結合活性を指標に、骨格筋よりCICRチャネル、即ちリアノジン受容体(RyR)が精製された<ref><pubmed>2448641</pubmed></ref>。その後の遺伝子クローニングにより、少なくとも[[wikipedia:ja:硬骨魚類|硬骨魚類]]以上の[[wikipedia:ja:脊椎動物|脊椎動物]]では、別々の遺伝子にコードされる3種類のRyRサブタイプが存在することが判明し、それぞれ、1型/骨格筋型(RyR1)、2型/心筋型(RyR2)、3型/脳型(RyR3)と呼ばれる<ref><pubmed>9137551</pubmed></ref><ref><pubmed>12777839</pubmed></ref>。各サブタイプは互いに65%程度のアミノ酸配列相同性を示すが、異なる組織分布・脳内分布を示す<ref><pubmed>1330694</pubmed></ref><ref><pubmed>7876312</pubmed></ref>。一方、[[線虫]]<ref><pubmed>9135117</pubmed></ref>、[[ショウジョウバエ]]<ref><pubmed>8276118</pubmed></ref>においては、どのタイプにも属さないRyR相同物が同定されており、[[wikipedia:ja:無脊椎動物|無脊椎動物]]においては単一遺伝子にコードされていたものが、脊椎動物において組織分布や機能的役割が異なる3種のサブタイプに分子進化したと推測されている。  


== 分子構造<ref name="ref9"><pubmed>17506640</pubmed></ref><ref name="ref10"><pubmed>20961976</pubmed></ref>  ==
== 分子構造 ==


 RyRは約5,000アミノ酸残基より構成される分子量約550kDaの巨大タンパク質であり、そのホモ4量体により機能的なカルシウム放出チャネルが形成される。RyR分子内では、アミノ末端側約4,500アミノ酸が細胞質側に大きく張り出した、いわゆるfoot構造に対応する領域を形成し、4本の推定膜貫通セグメントを含む残りのカルボキシル末端がチャネル領域を形成する(図1)。同じくカルシウム放出チャネルであるIP<sub>3</sub>受容体とRyRは、カルボキシル末端の膜貫通セグメントを含む約200アミノ酸において特に高い配列相同性を示し、この部分がカルシウム放出チャネルとして共通するイオン透過性に関連した機能に関与していると推測される。実際に、RyR1のカルボキシル末側の約1,000アミノ酸残基よりなる領域のみでリアノジン感受性を有する基本的なカルシウムチャネルが形成されることが、脂質二重膜を用いた再構築実験により示されている。この再構築系においてC末端領域が形成するチャネルは、[[wikipedia:ja:陽イオン|陽イオン]]選択性、細胞質側カルシウムによる活性化機構、リアノジン感受性を保持する一方で、全長RyR1チャネルに見られる高濃度のカルシウムによる不活性化機構を欠く。また、RyRサブタイプ間での一次構造の比較により、D1、D2、D3と呼ばれる相同性が顕著に低い領域が見られる。RyR1のcDNA発現実験系を用いた研究により、CICRによるチャネル活性化のカルシウム結合部位はD1領域、チャネルを不活性化する高濃度カルシウムの結合部位はD3領域に存在するとされている(図2)。  
 RyRは約5,000アミノ酸残基より構成される分子量約550kDaの巨大タンパク質であり、そのホモ4量体により機能的なカルシウム放出チャネルが形成される。RyR分子内では、アミノ末端側約4,500アミノ酸が細胞質側に大きく張り出した、いわゆるfoot構造に対応する領域を形成し、4本の推定膜貫通セグメントを含む残りのカルボキシル末端がチャネル領域を形成する(図1)。同じくカルシウム放出チャネルであるIP<sub>3</sub>受容体とRyRは、カルボキシル末端の膜貫通セグメントを含む約200アミノ酸において特に高い配列相同性を示し、この部分がカルシウム放出チャネルとして共通するイオン透過性に関連した機能に関与していると推測される。実際に、RyR1のカルボキシル末側の約1,000アミノ酸残基よりなる領域のみでリアノジン感受性を有する基本的なカルシウムチャネルが形成されることが、脂質二重膜を用いた再構築実験により示されている。この再構築系においてC末端領域が形成するチャネルは、[[wikipedia:ja:陽イオン|陽イオン]]選択性、細胞質側カルシウムによる活性化機構、リアノジン感受性を保持する一方で、全長RyR1チャネルに見られる高濃度のカルシウムによる不活性化機構を欠く。また、RyRサブタイプ間での一次構造の比較により、D1、D2、D3と呼ばれる相同性が顕著に低い領域が見られる。RyR1のcDNA発現実験系を用いた研究により、CICRによるチャネル活性化のカルシウム結合部位はD1領域、チャネルを不活性化する高濃度カルシウムの結合部位はD3領域に存在するとされている<ref name="ref9"><pubmed>17506640</pubmed></ref><ref name="ref10"><pubmed>20961976</pubmed></ref>(図2)。  


<gallery widths=250px heights=100px>
<gallery widths=250px heights=100px>
23行目: 23行目:
</gallery>
</gallery>


== 各サブタイプの体内分布<ref name="ref11"><pubmed>20214899</pubmed></ref>  ==
== 各サブタイプの体内分布 ==


=== RyR1  ===
=== RyR1  ===
35行目: 35行目:
=== RyR3  ===
=== RyR3  ===


 [http://mouse.brain-map.org/experiment/show/71325426 RyR3]は脳cDNAライブラリーからのクローニングにより存在が明らかになったが、脳以外にも平滑筋、骨格筋、一部の[[wikipedia:ja:上皮細胞|上皮細胞]]や[[wikipedia:ja:リンパ球|リンパ球]]培養細胞などにおいて低レベルの発現が見られる。海馬CA領域で高レベルの発現が見られる。海馬歯状回、線条体などでも比較的発現レベルが高い。  
 [http://mouse.brain-map.org/experiment/show/71325426 RyR3]は脳cDNAライブラリーからのクローニングにより存在が明らかになったが、脳以外にも平滑筋、骨格筋、一部の[[wikipedia:ja:上皮細胞|上皮細胞]]や[[wikipedia:ja:リンパ球|リンパ球]]培養細胞などにおいて低レベルの発現が見られる。海馬CA領域で高レベルの発現が見られる。海馬歯状回、線条体などでも比較的発現レベルが高い。
 
尚、詳細については、Giannini et al. (1995)<ref><pubmed>7876312</pubmed></ref>を参考にされたい。


== 活性調節因子<ref name="ref9" /><ref name="ref10" /><ref><pubmed>15618481</pubmed></ref>  ==
== 活性調節因子<ref name="ref9" /><ref name="ref10" /><ref><pubmed>15618481</pubmed></ref>  ==
61行目: 63行目:
=== ノックアウトマウスの表現型 ===
=== ノックアウトマウスの表現型 ===


 RyRの機能的役割解明を困難なものにしている主要な原因として、[[遺伝子欠損動物]]の致死性が挙げられる。上述の通り、[[wikipedia:ja:哺乳類|哺乳類]]の脳の多くの領域では、複数のRyRサブタイプが重複して発現しているが、RyR1欠損マウス、RyR2欠損マウスはそれぞれ単独で、出生致死、胎生致死を示す。したがって、複数のRyRサブタイプ遺伝子の二重もしくは三重欠損マウスが成熟しないことは自明であり、全身レベルでの遺伝子欠損マウスを用いたアプローチによっては、脳におけるRyRの機能は困難である。しかし、RyR3欠損マウスは生後も生存・成熟するため、その解析結果の報告が存在する。
 RyRの機能的役割解明を困難なものにしている主要な原因として、[[遺伝子欠損動物]]の致死性が挙げられる。上述の通り、[[wikipedia:ja:哺乳類|哺乳類]]の脳の多くの領域では、複数のRyRサブタイプが重複して発現しているが、RyR1欠損マウス、RyR2欠損マウスはそれぞれ単独で、出生致死、胎生致死を示す。したがって、複数のRyRサブタイプ遺伝子の二重もしくは三重欠損マウスが成熟しないことは自明であり、全身レベルでの遺伝子欠損マウスを用いたアプローチによっては、脳におけるRyRの機能は困難である。しかし、RyR3欠損マウスは生後も生存・成熟するため、その解析結果の報告が存在する<ref name="ref11"><pubmed>20214899</pubmed></ref>。


==== RyR1欠損マウス ====
==== RyR1欠損マウス ====
78

回編集