「ロドプシン」の版間の差分

95行目: 95行目:
 光を受容して応答した視細胞は、次の光を受容するために速やかにもとの静止状態に戻る必要がある。素早く戻ることが光受容の[[wikipedia:JA:時間分解能|時間分解能]]に関わるので、能動的に応答をシャットダウンし、もとの状態に戻ることが重要となる。  
 光を受容して応答した視細胞は、次の光を受容するために速やかにもとの静止状態に戻る必要がある。素早く戻ることが光受容の[[wikipedia:JA:時間分解能|時間分解能]]に関わるので、能動的に応答をシャットダウンし、もとの状態に戻ることが重要となる。  


 視細胞における光情報伝達はロドプシンの光受容によって始まり、また、ロドプシンからGタンパク質へのシグナル伝達の際に大きく増幅される。したがって、ロドプシンの活性状態を素早くシャットダウンすることは非常に重要である。ロドプシンの活性状態はメタロドプシンⅡ(Metarhodopsin II)と名付けられており、その名のとおり準安定(metastable)である。しかし、数十秒間は安定に存在する。視細胞の単一光子応答は1秒以内で終結するので、メタロドプシンⅡはこの時間よりも速くシャットダウン(不活性化)されている。メタロドプシンⅡの不活性化にはSer/Thrキナーゼである[[ロドプシンキナーゼ]](Rhodopsin Kinase: RK)が関与する。メタロドプシンⅡはこの酵素によって[[リン酸化]]され、そのGタンパク質活性化能が減少する。メタロドプシンⅡのC末端領域にはリン酸化される部位として複数のS/Tが同定されている。生体内では主にS334, S338, S343がリン酸化される。さらにリン酸化されたメタロドプシンⅡにアレスチン(Arrestin)が結合することによってGタンパク質との結合が完全に阻害される。
 視細胞における光情報伝達はロドプシンの光受容によって始まり、また、ロドプシンからGタンパク質へのシグナル伝達の際に大きく増幅される。したがって、ロドプシンの活性状態を素早くシャットダウンすることは非常に重要である。ロドプシンの活性状態はメタロドプシンⅡ(Metarhodopsin II)と名付けられており、その名のとおり準安定(metastable)である。しかし、数十秒間は安定に存在する。視細胞の単一光子応答は1秒以内で終結するので、メタロドプシンⅡはこの時間よりも速くシャットダウン(不活性化)されている。メタロドプシンⅡの不活性化にはSer/Thrキナーゼである[[ロドプシンキナーゼ]](Rhodopsin Kinase: RK)が関与する。メタロドプシンⅡはこの酵素によって[[リン酸化]]され、そのGタンパク質活性化能が減少する。メタロドプシンⅡのC末端領域にはリン酸化される部位として複数のセリン、スレオニンが同定されている。生体内では主にセリン334, セリン338, セリン343がリン酸化される。さらにリン酸化されたメタロドプシンⅡに[[アレスチン]](Arrestin)が結合することによってGタンパク質との結合が完全に阻害される。


 桿体視細胞の応答プロファイルは非常に再現性が良い。これを実現するために、応答を複数のステップで制御する(Multistep shut-off)機構があると考えられている。ロドプシンの不活性化が単一ステップだけで起こる場合、分子間の相互作用は確率論的に起こるので、速くシャッタダウンする場合や遅くシャットダウンする場合がでてくる。このようにシャットダウンがランダムだと単一光子応答がばらつき、ノイズと区別できなくなる。そのため、ロドプシンは複数ステップのシャットダウン機構を用いることによってシャットダウン時間の可変性を平均化し応答の再現性を保証していると考えられている。  
 桿体視細胞の応答プロファイルは非常に再現性が良い。これを実現するために、応答を複数のステップで制御する(Multistep shut-off)機構があると考えられている。ロドプシンの不活性化が単一ステップだけで起こる場合、分子間の相互作用は確率論的に起こるので、速くシャッタダウンする場合や遅くシャットダウンする場合がでてくる。このようにシャットダウンがランダムだと単一光子応答がばらつき、ノイズと区別できなくなる。そのため、ロドプシンは複数ステップのシャットダウン機構を用いることによってシャットダウン時間の可変性を平均化し応答の再現性を保証していると考えられている。  


 Gαは内在的な[[GTPase]]活性をもつ。そのため、GTPと結合して活性状態になったGαは自発的にGTPをGDPに加水分解し、再びGβγと結合して不活性状態に戻る。しかし、Gαの自発的な酵素活性は低く、視細胞内ではPDEγに結合したGαにGAP([[GTPase Activating Protein]])が作用することによってGTPの加水分解を加速している。Gαが不活性化しPDEから遊離するとPDEγは再び酵素活性部位であるPDEαβを阻害するためPDEの活性が抑えられる。
 Gαは内在的な[[GTPase]]活性をもつ。そのため、GTPと結合して活性状態になったGαは自発的にGTPをGDPに加水分解し、再びGβγと結合して不活性状態に戻る。しかし、Gαの自発的な酵素活性は低く、視細胞内ではPDEγに結合したGαにGAP([[GTPase Activating Protein]])が作用することによってGTPの加水分解を加速している。Gαが不活性化しPDEから遊離するとPDEγは再び酵素活性部位であるPDEαβを阻害するためPDEの活性が抑えられる。
 
 細胞が完全にもとの状態に戻るには、PDEの作用によって急減した細胞内cGMP濃度ももとに戻す必要がある。cGMPは[[グアニル酸シクラーゼ]]によって定常的に合成されているが、グアニル酸シクラーゼの活性は[[wikipedia:Guanylate_cyclase_activator|グアニル酸シクラーゼ活性化タンパク質]] (Guanyl Cyclase Activating Protein, GCAP)によって調節されている。光応答により細胞膜のCNGチャネルが閉じ細胞内のCa<sup>2+</sup>濃度が下がるとGCAPはグアニル酸シクラーゼの活性を促進するようになる。細胞内カルシウムの増減によるこの制御機構をカルシウムフィードバック機構と呼ぶ。この機構により細胞内のcGMP濃度が速やかに上昇すると[[CNGチャネル]]も開き、視細胞が元の状態に戻る。なお、細胞内カルシウム濃度の減少により、[[ロドプシンキナーゼ]]を制御する因子([[Sモジュリン]]あるいはリカバリンと呼ばれている)も知られており<ref><pubmed> 8386803 </pubmed></ref>、GCAPとあわせて視細胞の[[明順応]]を説明する一つの機構と考えられている。


 細胞が完全にもとの状態に戻るには、PDEの作用によって急減した細胞内cGMP濃度ももとに戻す必要がある。cGMPは[[グアニル酸シクラーゼ]]によって定常的に合成されているが、グアニル酸シクラーゼの活性は[[wikipedia:Guanylate_cyclase_activator|グアニル酸シクラーゼ活性化タンパク質]] (Guanyl Cyclase Activating Protein, GCAP)によって調節されている。光応答により細胞膜のCNGチャネルが閉じ細胞内のCa<sup>2+</sup>濃度が下がるとGCAPはグアニル酸シクラーゼの活性を促進するようになる。細胞内カルシウムの増減によるこの制御機構をカルシウムフィードバック機構と呼ぶ。この機構により細胞内のcGMP濃度が速やかに上昇すると[[CNGチャネル]]も開き、視細胞が元の状態に戻る。なお、細胞内カルシウム濃度の減少により、ロドプシンキナーゼを制御(どのように?)する因子([[Sモジュリン]]あるいはリカバリンと呼ばれている)も知られており<ref><pubmed> 8386803 </pubmed></ref>、GCAPとあわせて視細胞の[[明順応]]を説明する一つの機構と考えられている。


== ロドプシン類似タンパク質 ==
== ロドプシン類似タンパク質 ==