「一次運動野」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(3人の利用者による、間の3版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/ishida.it 石田 裕昭]、[http://researchmap.jp/hoshie 星 英司]</font><br>
<font size="+1">[http://researchmap.jp/ishida.it 石田 裕昭]、[http://researchmap.jp/hoshie 星 英司]</font><br>
''公益財団法人東京都医学総合研究所''<br>
''公益財団法人東京都医学総合研究所''<br>
DOI:<selfdoi /> 原稿受付日:2015年6月2日 原稿完成日:2015年xx月xx日<br>
DOI:<selfdoi /> 原稿受付日:2015年6月2日 原稿完成日:2015年9月10日<br>
担当編集委員:[http://researchmap.jp/noritakaichinohe 一戸 紀孝](国立精神・神経医療研究センター 神経研究所)<br>
担当編集委員:[http://researchmap.jp/noritakaichinohe 一戸 紀孝](国立精神・神経医療研究センター 神経研究所)<br>
</div>
</div>
16行目: 16行目:


==一次運動野とは==
==一次運動野とは==
 19世紀後半に[[wikipedia:John Hughlings Jackson|Hughlings Jackson]]は、[[てんかん]]患者の発作時に見られる痙攣がしばしば手に始まり、より近位の腕から体幹に、あるいは顔に移行していく様子を観察し、[[中心溝]]付近に体部位局在があると推測した 。その後、[[ヒト]]や[[サル]]の一次運動野の表面に電極を当て、弱い電流で局所的に刺激すると、反対側の四肢や顔面の運動が誘発されることが分かった(図1、2)<ref name=ref22>'''Penfield, W., & Boldrey, E.'''<br>Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.<br> ''Brain'', 60, 369-443. (1937)</ref> <ref name=ref29>'''Woolsey, C. N'''<br>Organization of somatic sensory and motor areas of the cerebral cortex. <br>Woolsey, C. N., & Harlow, H. F. (Eds.). <br>Biological and biochemical bases of behavior (pp. 63-81)  (1958)<br>Madison: University of Wisconsin Press.</ref>。一次運動野のこうした体部位局在のため、損傷されると局在に対応する体部位の運動麻痺が反対側に起こる。一次運動野は、随意運動のプログラミングに関わる大脳皮質の高次運動野や頭頂連合野からの入力を統合して最終的な運動指令を形成し、これを下位中枢(脳幹や脊髄)へ出力する。
 19世紀後半に[[wikipedia:John Hughlings Jackson|Hughlings Jackson]]は、[[てんかん]]患者の発作時に見られる[[痙攣]]がしばしば手に始まり、より近位の腕から体幹に、あるいは顔に移行していく様子を観察し、[[中心溝]]付近に[[体部位局在]]があると推測した 。その後、[[ヒト]]や[[サル]]の一次運動野の表面に電極を当て、弱い電流で局所的に刺激すると、反対側の四肢や顔面の運動が誘発されることが分かった('''図1、2''')<ref name=ref22>'''Penfield, W., & Boldrey, E.'''<br>Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.<br> ''Brain'', 60, 369-443. (1937)</ref> <ref name=ref29>'''Woolsey, C. N'''<br>Organization of somatic sensory and motor areas of the cerebral cortex. <br>Woolsey, C. N., & Harlow, H. F. (Eds.). <br>Biological and biochemical bases of behavior (pp. 63-81)  (1958)<br>Madison: University of Wisconsin Press.</ref>。一次運動野のこうした体部位局在のため、損傷されると局在に対応する体部位の[[運動麻痺]]が反対側に起こる。


(編集コメント:「一次運動野の機能という見出しで始まるセクションが2つありましたので、イントロダクションと体部位再現を分離しました。イントロダクションについてはもう少し、膨らませていただければと思います。)
 一次運動野は、[[随意運動]]のプログラミングに関わる大脳皮質の[[高次運動野]]や[[頭頂連合野]]からの入力を統合して最終的な運動指令を形成し、これを[[下位中枢]]([[脳幹]]や[[脊髄]])へ出力する。


==構造==
==構造==
===細胞構築===
===細胞構築===
 細胞構築学的にはBrodmannの4野に相当し、Ⅳ層(内顆粒層)が未発達で無顆粒皮質(agranular cortex)と呼ばれる。また、一次運動野の層構造は他の皮質と比較して厚いこと、Ⅴ層(内錐体細胞層)深部に直径が60〜120μmに及ぶ巨大錐体細胞(ベッツ[Betz]細胞)が存在する、という特徴を持つ。この層の錐体細胞の軸索は皮質下領域へ投射しており、運動指令を下位中枢へ伝える役割を担っている(図4)。
 細胞構築学的には[[Brodmann]]の[[ブロードマン4野|4野]]に相当し、[[Ⅳ層]]([[内顆粒層]])が未発達で[[無顆粒皮質]]([[agranular cortex]])と呼ばれる。また、一次運動野の層構造は他の皮質と比較して厚いこと、[[Ⅴ層]]([[内錐体細胞層]])深部に直径が60〜120μmに及ぶ巨大錐体細胞([[ベッツ細胞|ベッツ[Betz]細胞]])が存在する、という特徴を持つ。この層の錐体細胞の[[軸索]]は皮質下領域へ投射しており、運動指令を下位中枢へ伝える役割を担っている(図4)。
 
(編集部コメント:細胞レベルでの構築についてお願いします。典型的な大脳皮質なので、詳細はいらないかと思いますが、ベッツの細胞などについては触れていただければと思います)
 
[[IMAGE:一次運動野3.png|thumb|300px|'''図3.一次運動野へ直接入力する脳の諸領域'''<br>上段(紺色)は高次運動野からの入力、下段(灰色)は運動野以外からの入力を示す。]]
[[IMAGE:一次運動野3.png|thumb|300px|'''図3.一次運動野へ直接入力する脳の諸領域'''<br>上段(紺色)は高次運動野からの入力、下段(灰色)は運動野以外からの入力を示す。]]
[[IMAGE:一次運動野4.png|thumb|300px|'''図4.一次運動野における出力ニューロンの層別分布'''<br>皮質表面のⅠ層からⅥ層にかけて複数の脳領域に出力する。]]
[[IMAGE:一次運動野4.png|thumb|300px|'''図4.一次運動野における出力ニューロンの層別分布'''<br>皮質表面のⅠ層からⅥ層にかけて複数の脳領域に出力する。]]


===入力===
===入力===
 一次運動野への主な入力源は、(1)[[高次運動野]]、(2)[[頭頂葉連合野]]、(3)[[視床]]である(図1、3)。
 一次運動野への主な入力源は、(1)[[高次運動野]]、(2)[[頭頂葉連合野]]、(3)[[視床]]である('''図1、3''')。


 高次運動野については、[[運動前野]]、[[補足運動野]]、[[帯状皮質運動野]]からの入力が豊富である<ref name=ref10><pubmed>11311401</pubmed></ref> <ref name=ref18><pubmed>1383283</pubmed></ref> <ref name=ref21><pubmed>8393892</pubmed></ref> <ref name=ref20><pubmed>7515081</pubmed></ref> <ref name=ref6><pubmed>15703391</pubmed></ref>。また、これらの入力においては、体部位局在性がよく保たれている。顔面や上肢などの異なる体部位を制御する高次運動野領域からの投射は、一次運動野の対応する身体部位領域に主な投射を送る。
 高次運動野については、[[運動前野]]、[[補足運動野]]、[[帯状皮質運動野]]からの入力が豊富である<ref name=ref10><pubmed>11311401</pubmed></ref> <ref name=ref18><pubmed>1383283</pubmed></ref> <ref name=ref21><pubmed>8393892</pubmed></ref> <ref name=ref20><pubmed>7515081</pubmed></ref> <ref name=ref6><pubmed>15703391</pubmed></ref>。また、これらの入力においては、体部位局在性がよく保たれている。顔面や上肢などの異なる体部位を制御する高次運動野領域からの投射は、一次運動野の対応する身体部位領域に主な投射を送る。
43行目: 40行目:
 一次運動野からの出力は、[[大脳皮質]]、[[脳幹]]、[[脊髄]]へ送られる(図4)。一次運動野の出力ニューロンは[[第Ⅱ層]]から[[Ⅵ層]]にわたって存在し、その位置と投射先には密接な関係がある。[[連合線維]](同一半球内の大脳皮質間の投射線維)や[[交連線維]](反対側半球へ投射する線維)を送るニューロンは[[第Ⅲ層]]にある。大脳基底核(線条体)や[[中脳]]、脳幹、脊髄への投射([[下行性投射]])を送るニューロンは[[第Ⅴ層]]にある。さらに、視床へ投射する細ニューロンは第Ⅵ層にある。
 一次運動野からの出力は、[[大脳皮質]]、[[脳幹]]、[[脊髄]]へ送られる(図4)。一次運動野の出力ニューロンは[[第Ⅱ層]]から[[Ⅵ層]]にわたって存在し、その位置と投射先には密接な関係がある。[[連合線維]](同一半球内の大脳皮質間の投射線維)や[[交連線維]](反対側半球へ投射する線維)を送るニューロンは[[第Ⅲ層]]にある。大脳基底核(線条体)や[[中脳]]、脳幹、脊髄への投射([[下行性投射]])を送るニューロンは[[第Ⅴ層]]にある。さらに、視床へ投射する細ニューロンは第Ⅵ層にある。


 [[霊長類]]では、皮質から脊髄へ向かう投射経路が発達しており、一次運動野にある[[巨大錐体細胞]]([[Betz細胞]])はその主要メンバーである。さらに、ヒトでは、[[脊髄運動ニューロン]]と単シナプス性に接続する経路([[直接経路]])が他の霊長類と比較して豊富であり、直接経路が個別の指を独立して動かす手指の巧緻性に深く関わることが示唆される<ref name=ref17><pubmed>18558853</pubmed></ref>。加えて、[[皮質脊髄路]]は[[脊髄介在ニューロン]]にも豊富に投射している。脊髄介在ニューロンを中継した経路(間接経路)は、歩行や姿勢保持に関与することに加え、直接経路と連携して様々な運動の遂行に関与する<ref name=ref1><pubmed>22524789</pubmed></ref>。
 [[霊長類]]では、皮質から脊髄へ向かう投射経路が発達しており、一次運動野にある巨大錐体細胞(Betz細胞)はその主要メンバーである。さらに、ヒトでは、[[脊髄運動ニューロン]]と単シナプス性に接続する経路([[直接経路]])が他の霊長類と比較して豊富であり、直接経路が個別の指を独立して動かす手指の巧緻性に深く関わることが示唆される<ref name=ref17><pubmed>18558853</pubmed></ref>。加えて、[[皮質脊髄路]]は[[脊髄介在ニューロン]]にも豊富に投射している。脊髄介在ニューロンを中継した経路(間接経路)は、歩行や姿勢保持に関与することに加え、直接経路と連携して様々な運動の遂行に関与する<ref name=ref1><pubmed>22524789</pubmed></ref>。


===体部位再現===
===体部位再現===
54行目: 51行目:
 一次運動野の機能単位について、[[皮質内微小電気刺激法]](intracortical micro stimulation, ICMS)を用いた研究がなされた。その結果、2つの対立する主張([[筋再現仮説]] vs. [[運動再現仮説]])がなされた。
 一次運動野の機能単位について、[[皮質内微小電気刺激法]](intracortical micro stimulation, ICMS)を用いた研究がなされた。その結果、2つの対立する主張([[筋再現仮説]] vs. [[運動再現仮説]])がなされた。


 Asanumaらは、数μA程度のという微弱な電流を用いたICMSで単一筋の収縮が一次運動野の狭い領域に限局して起こることを見出した。さらに、こうした部位が皮質内では脳表面に垂直方向に並んでおり、それが体部位毎に異なる一次運動野の部位に独立して存在することを示した。こうした結果により、各[[筋肉]]を支配している円柱状の領域(efferent zone)が一次運動野の最小機能単位と考え、「筋再現仮説」を提唱した<ref name=ref3>'''Asanuma, H., & Sakata, H.'''<br>Functional organization of a cortical efferent system examined with focal depth stimulation in cats.<br>Journal of Neurophysiology, 30(1), 35-54. (1967)</ref> <ref name=ref25><pubmed>4626361</pubmed></ref>。これに対し、PhillipsらによってなされたICMSを用いた研究は、異なる筋肉を収縮させるような領域はAsamumaらの推定よりも大きく、重複することを明らかにした<ref name=ref2 />。一次運動野の小領域(コロニー)が複数の筋肉を同時支配するという結果に基づき、彼らは、「運動再現仮説」を提唱した(図5A)。
 Asanumaらは、数 μA程度のという微弱な電流を用いたICMSで単一筋の収縮が一次運動野の狭い領域に限局して起こることを見出した。さらに、こうした部位が皮質内では脳表面に垂直方向に並んでおり、それが体部位毎に異なる一次運動野の部位に独立して存在することを示した。こうした結果により、各[[筋肉]]を支配している円柱状の領域(efferent zone)が一次運動野の最小機能単位と考え、「[[筋再現仮説]]」を提唱した<ref name=ref3>'''Asanuma, H., & Sakata, H.'''<br>Functional organization of a cortical efferent system examined with focal depth stimulation in cats.<br>Journal of Neurophysiology, 30(1), 35-54. (1967)</ref> <ref name=ref25><pubmed>4626361</pubmed></ref>。これに対し、PhillipsらによってなされたICMSを用いた研究は、異なる筋肉を収縮させるような領域はAsamumaらの推定よりも大きく、重複することを明らかにした<ref name=ref2 />。一次運動野の小領域(コロニー)が複数の筋肉を同時支配するという結果に基づき、彼らは、「[[運動再現仮説]]」を提唱した(図5A)。


===皮質脊髄路ニューロンの複数筋同時支配===
===皮質脊髄路ニューロンの複数筋同時支配===
 Shinoda らは脊髄[[側索]]にある皮質脊髄路ニューロンの[[軸索]]を電気生理学的に同定した後、標識物質を軸索内注入し、連続切片から軸索の全体像を再構築した。その結果、単一の皮質脊髄路ニューロンは脊髄では広汎に分岐しており、複数の運動ニューロンプールを支配していることを明らかにした<ref name=ref26><pubmed>103741</pubmed></ref> <ref name=ref27><pubmed>6164967</pubmed></ref>。またFetzらは、単一の皮質脊髄路ニューロンが興奮した時に生じる[[スパイク]]電位を基準にして、その直後の筋活動を平均加算法で解析することにより、単一の皮質脊髄路ニューロンが複数の筋肉を同時に支配していることを明らかにした<ref name=ref5><pubmed>2984355</pubmed></ref>。さらに、Strickらは越シナプス性に逆行性に伝播する性質のある[[wikipedia:ja:狂犬病ウイルス|狂犬病ウイルス]]を手指の筋肉([[wikipedia:ja:長母指外転筋|長母指外転筋]]、[[wikipedia:ja:総指伸|総指伸筋]]など)に注入し、運動ニューロンを介してこれに投射する皮質脊髄路ニューロンを一次運動野に同定した。その分布を解析したところ、一次運動野の後方部の広範囲に分布しており、異なる筋肉へ投射するニューロンの分布が重複することを明らかにした<ref name=ref23><pubmed>16702556</pubmed></ref>。
 Shinoda らは脊髄[[側索]]にある皮質脊髄路ニューロンの[[軸索]]を電気生理学的に同定した後、標識物質を軸索内注入し、連続切片から軸索の全体像を再構築した。その結果、単一の皮質脊髄路ニューロンは脊髄では広汎に分岐しており、複数の[[運動ニューロン]]プールを支配していることを明らかにした<ref name=ref26><pubmed>103741</pubmed></ref> <ref name=ref27><pubmed>6164967</pubmed></ref>。またFetzらは、単一の皮質脊髄路ニューロンが興奮した時に生じる[[スパイク]]電位を基準にして、その直後の筋活動を平均加算法で解析することにより、単一の皮質脊髄路ニューロンが複数の筋肉を同時に支配していることを明らかにした<ref name=ref5><pubmed>2984355</pubmed></ref>。さらに、Strickらは越シナプス性に逆行性に伝播する性質のある[[wikipedia:ja:狂犬病ウイルス|狂犬病ウイルス]]を手指の筋肉([[wikipedia:ja:長母指外転筋|長母指外転筋]]、[[wikipedia:ja:総指伸|総指伸筋]]など)に注入し、運動ニューロンを介してこれに投射する[[皮質脊髄路]]ニューロンを一次運動野に同定した。その分布を解析したところ、一次運動野の後方部の広範囲に分布しており、異なる筋肉へ投射するニューロンの分布が重複することを明らかにした<ref name=ref23><pubmed>16702556</pubmed></ref>。


 このような複数の研究によって得られた結果は、単一の筋は、運動野の複数部位によって協調的に支配されていることを示す(図5B)。これは、運動再現仮説を支持する。
 このような複数の研究によって得られた結果は、単一の筋は、運動野の複数部位によって協調的に支配されていることを示す(図5B)。これは、運動再現仮説を支持する。
70行目: 67行目:
 これに対しGeorgopoulosらは、上肢を用いて二次元の平面上で8方向のターゲットに向かう到達運動課題を動物に遂行させ、一次運動野のニューロン活動を記録した。その結果、多数のニューロン集団の活動情報から、実際の運動方向を抽出できることを示した。この結果は、いずれの仮説からも導き出せる結果であるが、一次運動野が運動制御にとって重要であることを示す<ref name=ref9><pubmed>7143039</pubmed></ref>。
 これに対しGeorgopoulosらは、上肢を用いて二次元の平面上で8方向のターゲットに向かう到達運動課題を動物に遂行させ、一次運動野のニューロン活動を記録した。その結果、多数のニューロン集団の活動情報から、実際の運動方向を抽出できることを示した。この結果は、いずれの仮説からも導き出せる結果であるが、一次運動野が運動制御にとって重要であることを示す<ref name=ref9><pubmed>7143039</pubmed></ref>。
   
   
 その後、Kakeiらは、両仮説の相違を座標系という枠組みで捉え直した。例えば、手首の伸展屈曲運動について考えてみる。手掌の上向き・下向き方向の違いにより、空間における運動方向が同じでも、[[wikipedia:ja:関節|関節]]運動の観点からは全く違う運動の場合がある。例えば、上向きの運動の場合について考えてみる。手のひらが下を向いていたら手首の伸展運動が要求され、一方で、手のひらが上を向いていたら手首の屈曲運動が要求される。こうした発想に基づき、Kakeiらは目標に向かう手の動きと([[空間座標]])とそれに伴う関節の動き([[身体座標]])や筋活動の大きさを分離するような課題を動物に遂行させた。一次運動野のニューロン活動を記録した結果、一次運動野には筋活動を表現するニューロンだけでなく、使う筋肉に関係なく手首を特定の空間方向に動かす際に活動するニューロン、すなわち空間座標系ニューロンが存在することが明らかとなった<ref name=ref15><pubmed>10497133</pubmed></ref> <ref name=ref16><pubmed>12725907</pubmed></ref>。こうした結果は、一次運動野において空間における運動方向から、実際の筋活動への変換が行われていることを示唆している。
 その後、Kakeiらは、両仮説の相違を[[座標系]]という枠組みで捉え直した。例えば、手首の伸展屈曲運動について考えてみる。手掌の上向き・下向き方向の違いにより、空間における運動方向が同じでも、[[wikipedia:ja:関節|関節]]運動の観点からは全く違う運動の場合がある。例えば、上向きの運動の場合について考えてみる。手のひらが下を向いていたら手首の伸展運動が要求され、一方で、手のひらが上を向いていたら手首の屈曲運動が要求される。こうした発想に基づき、Kakeiらは目標に向かう手の動きと([[空間座標]])とそれに伴う関節の動き([[身体座標]])や筋活動の大きさを分離するような課題を動物に遂行させた。一次運動野のニューロン活動を記録した結果、一次運動野には筋活動に近い活動を示すニューロンだけでなく、使う筋肉に関係なく手首を特定の空間方向に動かす際に活動するニューロン、すなわち[[空間座標系]]ニューロンが存在することが明らかとなった<ref name=ref15><pubmed>10497133</pubmed></ref> <ref name=ref16><pubmed>12725907</pubmed></ref>。こうした結果は、一次運動野において空間座標系と[[身体座標系]]が並行して表現されており、これらの間で相互作用があることを示唆している。


==破壊症状==
==破壊症状==
 一次運動野の切除、ないし、皮質脊髄路の損傷により運動指令の生成や伝導が障害されると、以下の様な[[錐体路症状]]を示す。(1)反対側の支配領域に対応した体部位の[[骨格筋]]の緊張低下、[[弛緩性麻痺]]、(2)[[バビンスキー反射]]などの[[異常反射]]の出現、(3)筋緊張、[[腱反射]]の亢進にともなう痙性麻痺、が主症状である。麻痺の部位と広がりは[[体部位再現]]性に対応し、障害部位により決まる。
 一次運動野の切除、ないし、皮質脊髄路の損傷により運動指令の生成や伝導が障害されると、以下の様な[[錐体路症状]]を示す。(1)反対側の支配領域に対応した体部位の[[骨格筋]]の緊張低下、[[弛緩性麻痺]]、(2)[[バビンスキー反射]]などの[[異常反射]]の出現、(3)筋緊張、[[腱反射]]の亢進にともなう[[痙性麻痺]]、が主症状である。麻痺の部位と広がりは[[体部位再現]]性に対応し、障害部位により決まる。


==関連項目==
==関連項目==