「上皮成長因子」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
8行目: 8行目:


== 神経系における活性 ==
== 神経系における活性 ==
 多くの受容体チロシンキナーゼリガンドと同様、EGFは細胞増殖や細胞の生存を促進する活性を持つ。EGFRのノックアウトマウスでは大脳皮質のニューロン新生が低下することから、EGFRシグナルが神経系前駆細胞の増殖や生存に重要な役割を持っていることが示されている。また、成体ラット脳質へのEGF投与は側脳室のsubventricular zone(SVZ)における前駆細胞の増加をうながす。しかし、TGFαのノックアウトマウスでSVZの前駆細胞の増殖が大きく損なわれることから、正常時にSVZの前駆細胞の増殖を活性化しているのは、TGFα/EGFRの組み合わせかもしれない。一方で、ドーパミン産生ニューロンの投射がSVZ前駆細胞にコンタクトしており、ドーパミン受容体の活性化によって前駆細胞細胞の増殖を促進していること、SVZの神経前駆細胞自体がEGFを発現しており、EGFRの阻害剤によってドーパミンによる増殖促進効果が抑制されることから、ドーパミンがEGFの発現誘導を介してSVZ神経前駆細胞の増殖を促進している可能性が示唆されている。ともあれ、実験的に障害を受けた脳幹について、EGFとアルブミンの同時投与がニューロン新生、特にparvalbumin発現インターニューロンの増加を促進することが報告されており、EGFの細胞増殖活性の神経障害治療への応用が考えられる。また、EGFやTGFαは嗅上皮において基底細胞の増殖を促進することも知られている。嗅上皮は成体で継続して神経新生がおきている場所として知られており、大脳側脳室とともにEGFによって細胞増殖が制御されている部位であると考えられる。
 多くの受容体チロシンキナーゼリガンドと同様、EGFは細胞増殖や細胞の生存を促進する活性を持つ。EGFRのノックアウトマウスでは大脳皮質のニューロン新生が低下することから、EGFRシグナルが神経系前駆細胞の増殖や生存に重要な役割を持っていることが示されている。また、成体ラット脳質へのEGF投与は側脳室のsubventricular zone(SVZ)における前駆細胞の増加をうながす。しかし、TGFαのノックアウトマウスでSVZの前駆細胞の増殖が大きく損なわれることから、正常時にSVZの前駆細胞の増殖を活性化しているのは、TGFα/EGFRの組み合わせかもしれない。一方で、ドーパミン産生ニューロンの投射がSVZ前駆細胞にコンタクトしており、ドーパミン受容体の活性化によって前駆細胞細胞の増殖を促進していること、SVZの神経前駆細胞自体がEGFを発現しており、EGFRの阻害剤によってドーパミンによる増殖促進効果が抑制されることから、ドーパミンがEGFの発現誘導を介してSVZ神経前駆細胞の増殖を促進している可能性が示唆されている<ref><pubmed> 19713754 </pubmed></ref>。ともあれ、実験的に障害を受けた脳幹について、EGFとアルブミンの同時投与がニューロン新生、特にparvalbumin発現インターニューロンの増加を促進することが報告されており<ref><pubmed> 12697732 </pubmed></ref>、EGFの細胞増殖活性の神経障害治療への応用が考えられる。また、EGFやTGFαは嗅上皮において基底細胞の増殖を促進することも知られている<ref><pubmed> 10385999 </pubmed></ref>。嗅上皮は成体で継続して神経新生がおきている場所として知られており、大脳側脳室とともにEGFによって細胞増殖が制御されている部位であると考えられる。
 前駆細胞だけでなく、一部のニューロンもEGFRを発現しており、さまざまな活性が見られる。培養下において大脳皮質ニューロンに対して生存や神経突起伸長を促す。また、EGFは培養ドーパミン産生ニューロンの長期生存や神経突起の伸長を促進する。前者については直接ニューロンに働きかけているものであるが、後者についてはアストロサイトを介した間接的なものであると考えられている。また、EGFはEGFRを発現する海馬由来のニューロンについて、NMDA受容体を介した細胞内カルシウムイオンの上昇を促進することから、海馬においてシナプスの可塑性の制御に関わっている可能性がある。これに関連して、EGFはラット海馬のスライス培養下でシャッファー側枝や交連繊維(Schaffer/commissural)/CA1 錐体細胞(pyramidal cell)シナプスの長期増強(long-term potentiation、LTP)を増加させ、in vivoにおいてラットの貫通繊維路(perforant path)/歯状回顆粒細胞(dentate granule cell)シナプスのLTP形成を促進する。一方、マウス新生仔へのEGFの投与によって、大脳新皮質におけるAMPA受容体(GluR1やGluR2/3)の発現上昇が抑制されることや、大脳皮質のスライス培養下でのEGF処理がGABA産生ニューロンの興奮性シナプス後電流(post synaptic current)を減弱させることが示されており<ref><pubmed> 17284178 </pubmed></ref>、ニューロンのタイプによってEGFシグナルのシナプス形成と機能への効果は異なるようである。
 前駆細胞だけでなく、一部のニューロンもEGFRを発現しており、さまざまな活性が見られる。培養下において大脳皮質ニューロンに対して生存や神経突起伸長を促す<ref><pubmed> 9044427 </pubmed></ref>。また、EGFは培養ドーパミン産生ニューロンの長期生存や神経突起の伸長を促進する。前者については直接ニューロンに働きかけているものであるが、後者についてはアストロサイトを介した間接的なものであると考えられている。また、EGFはEGFRを発現する海馬由来のニューロンについて、NMDA受容体を介した細胞内カルシウムイオンの上昇を促進することから<ref><pubmed> 1356059 </pubmed></ref>、海馬においてシナプスの可塑性の制御に関わっている可能性がある。これに関連して、EGFはラット海馬のスライス培養下でシャッファー側枝や交連繊維(Schaffer/commissural)/CA1 錐体細胞(pyramidal cell)シナプスの長期増強(long-term potentiation、LTP)を増加させ、in vivoにおいてラットの貫通繊維路(perforant path)/歯状回顆粒細胞(dentate granule cell)シナプスのLTP形成を促進する<ref><pubmed> 1664922 </pubmed></ref>。一方、マウス新生仔へのEGFの投与によって、大脳新皮質におけるAMPA受容体(GluR1やGluR2/3)の発現上昇が抑制されることや、大脳皮質のスライス培養下でのEGF処理がGABA産生ニューロンの興奮性シナプス後電流(post synaptic current)を減弱させることが示されており<ref><pubmed> 17284178 </pubmed></ref>、ニューロンのタイプによってEGFシグナルのシナプス形成と機能への効果は異なるようである。


== 参考文献 ==
== 参考文献 ==


<references/>
<references/>
91

回編集