「内側膝状体」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
6行目: 6行目:


==概要==
==概要==
内側膝状体(MG)は視床に属する神経核群であり、中脳下丘と大脳皮質聴覚野の間に位置する聴覚伝導路の中継核である。上行系は下丘から、下降系は大脳皮質聴覚野から入力を受ける。大脳皮質聴覚野へ送る聴覚情報の選別がMGの主な機能であると考えられている(Le Gros Clark WE, 1932)。MGは腹側核(ventral division of the medial geniculate body, MGv)、背側核(dorsal division of the medial geniculate body, MGd)、内側核(medial division of the medial geniculate body, MGm)の3つの亜核が主な構成亜核である。MGvは主に蝸牛神経核腹側核から始まるlemniscal系の下丘中心核から聴覚情報を受け、MGd, MGmは下丘だけでなく他の視床核や脊髄などのnon-lemniscal系からmultimodalな修飾的な情報を得ていると考えられる。MG内の亜領域同士の結合や、左右MG同士の結合は存在しないとされている(Paxinos, 2004)。
内側膝状体(MG)は視床に属する神経核群であり、中脳下丘と大脳皮質聴覚野の間に位置する聴覚伝導路の中継核である。上行系は下丘から、下降系は大脳皮質聴覚野から入力を受ける。大脳皮質聴覚野へ送る聴覚情報の選別がMGの主な機能であると考えられている(Paxinos, 2004)。MGは腹側核(ventral division of the medial geniculate body, MGv)、背側核(dorsal division of the medial geniculate body, MGd)、内側核(medial division of the medial geniculate body, MGm)の3つの亜核が主な構成亜核である。MGvは主に蝸牛神経核腹側核から始まるlemniscal系の下丘中心核から聴覚情報を受け、MGd, MGmは下丘だけでなく他の視床核や脊髄などのnon-lemniscal系からmultimodalな修飾的な情報を得ていると考えられる。MG内の亜領域同士の結合や、左右MG同士の結合は存在しないとされている(Paxinos, 2004)。


==MGを構成する亜核について==
==MGを構成する亜核について==
13行目: 13行目:


===MGv===
===MGv===
MGvは3つの亜核の中で、聴覚情報処理の中心的な役割を担っている領域である。MGvを構成する主なニューロンはtufted neuronであり、30%弱がstellate cellである(図2)。MGvは周囲をthe marginal zone (MZ)に囲まれており、さらにpars lateralis (LV), pars ovoidea (PO), pars ventrolateralis (PV)の3つに区別される(図2)。pars lateralisはMGvの代表的部位で、音の高さに沿ったトノトピーが層状に構成されている(Laminae構造)(図3)。Laminae構造はラットでは弱いがネコでは非常にはっきりとした構造となる<ref><pubmed> 10320097 </pubmed></ref>。Tufted neuronの樹状突起も層構造に沿って配置されている。Pars ovoideaではtufted neuronの樹状突起と軸索は渦で巻いた様な形態をとっている(図3)。[[ファイル:Hiroakitsukano_Fig2.jpg|thumb|300px|'''図2 MGを構成するニューロン''' 出版元より許可を得て引用。<ref><pubmed> 10320097 </pubmed></ref>]]
MGvは3つの亜核の中で、聴覚情報処理の中心的な役割を担っている領域である。MGvを構成する主なニューロンはtufted neuronであり、30%弱がstellate cellである(図2)。MGvは周囲をthe marginal zone (MZ)に囲まれており、さらにpars lateralis (LV), pars ovoidea (PO), pars ventrolateralis (PV)の3つに区別される(図2)。pars lateralisはMGvの代表的部位で、音の高さに沿ったトノトピーが層状に構成されている(Laminae構造)。Laminae構造はラットでは弱いがネコでは非常にはっきりとした構造となる<ref><pubmed> 10320097 </pubmed></ref>。Tufted neuronの樹状突起も層構造に沿って配置されている。Pars ovoideaではtufted neuronの樹状突起と軸索は渦で巻いた様な形態をとっている(図2)。[[ファイル:Hiroakitsukano_Fig2.jpg|thumb|300px|'''図2 MGを構成するニューロン''' 出版元より許可を得て引用。<ref><pubmed> 10320097 </pubmed></ref>]]


MGvが主に受ける軸索は同側下丘の中心核(central nucleus of the inferior colliculus, ICC)のニューロンからであり、興奮性入力はグルタミン酸作動性でNMDA/AMPA受容体に作用する。樹状突起には代謝型グルタミン酸受容体も存在する<ref><pubmed> 10444669 </pubmed></ref>。MGvへの抑制性入力はGABA作動性であり、GABAA/GABAB受容体に作用する<ref><pubmed> 10322042 </pubmed></ref>。MGvから大脳皮質へは、Core領域(前聴覚野(anterior auditory field, AAF)、一次聴覚野(primary auditory cortex, AI)、ネコやイヌなどのposterior auditory field (P))のIII/IV層にトノトピー構造をもって軸索を伸ばす。聴覚野からの下降性の直接入力は興奮性しかないが、視床網様核(reticular thalamic nucleus, TRN)を経由してMGを抑制する系が存在する(図4)。
MGvが主に受ける軸索は同側下丘の中心核(central nucleus of the inferior colliculus, ICC)のニューロンからであり、興奮性入力はグルタミン酸作動性でNMDA/AMPA受容体に作用する。樹状突起には代謝型グルタミン酸受容体も存在する<ref><pubmed> 10444669 </pubmed></ref>。MGvへの抑制性入力はGABA作動性であり、GABAA/GABAB受容体に作用する<ref><pubmed> 10322042 </pubmed></ref>。MGvから大脳皮質へは、Core領域(前聴覚野(anterior auditory field, AAF)、一次聴覚野(primary auditory cortex, AI)、ネコやイヌなどのposterior auditory field (P))のIII/IV層にトノトピー構造をもって軸索を伸ばす。聴覚野からの下降性の直接入力は興奮性しかないが、視床網様核(reticular thalamic nucleus, TRN)を経由してMGを抑制する系が存在する(図3)。


MGvは個々のニューロンの周波数チューニングが比較的鋭いが、下丘で見られる様な非常に鋭い周波数チューニングを持つニューロンはあまり見られない。MGvニューロンの潜時は非常に短い。MGvはpars ventrolateralisにおいてはっきりしたトノトピー構造を持つ。即ち、低周波数音に最適周波数を持つニューロンから高周波数音に最適周波数を持つニューロンまでが一方向に並んでいる。しかし種によってこの構造には差異がある。ラットやウサギでは、低周波数に良く応ずるニューロンは背側部に、高周波数に応ずるニューロンは腹側部に位置する<ref><pubmed> 22405210 </pubmed></ref><ref><pubmed> 16344161 </pubmed></ref>。ネコでは低周波数に応ずるニューロンは腹側部に、高周波数に応ずるニューロンは背側部に位置し逆転している<ref><pubmed> 3973661 </pubmed></ref>。Pars ovoideaは、ネコでは低周波数から高周波数まで応ずるが、ウサギでは低い周波数に選択的に応ずる領域であると考えられている(Paxinos, 2004)。
MGvは個々のニューロンの周波数チューニングが比較的鋭いが、下丘で見られる様な非常に鋭い周波数チューニングを持つニューロンはあまり見られない。MGvニューロンの潜時は非常に短い。MGvはpars ventrolateralisにおいてはっきりしたトノトピー構造を持つ。即ち、低周波数音に最適周波数を持つニューロンから高周波数音に最適周波数を持つニューロンまでが一方向に並んでいる。しかし種によってこの構造には差異がある。ラットやウサギでは、低周波数に良く応ずるニューロンは背側部に、高周波数に応ずるニューロンは腹側部に位置する<ref><pubmed> 22405210 </pubmed></ref><ref><pubmed> 16344161 </pubmed></ref>。ネコでは低周波数に応ずるニューロンは腹側部に、高周波数に応ずるニューロンは背側部に位置し逆転している<ref><pubmed> 3973661 </pubmed></ref>。Pars ovoideaは、ネコでは低周波数から高周波数まで応ずるが、ウサギでは低い周波数に選択的に応ずる領域であると考えられている(Paxinos, 2004)。
84

回編集