「到達運動」の版間の差分

1,257 バイト追加 、 2019年4月17日 (水)
編集の要約なし
編集の要約なし
32行目: 32行目:
===制御モデル===
===制御モデル===
軌道が求められたら、それを実行に移すための[[運動指令]]の生成や制御を行わなければならない。正確な運動の実行にあたっては、[[感覚フィードバック]]は実際の運動よりも遅れてしまうため、[[フィードバック制御]]は難しい。したがって、[[フィードフォワード制御]]のモデルが考えられてきた。運動前に運動を計画して、フィードバックを使わずに運動を行うモデルであるが、これには[[順モデル]]や[[逆モデル]]と呼ばれる[[内部モデル]]が必要となる。[[逆モデル]]は軌道から運動指令を生成する。また、[[順モデル]]は、運動指令からフィードバックの予測を行う。この予測によって、より早い運動指令の修正が行われる。しかし、システム内部にはノイズが存在するため、運動時間を経るに従って、誤差が増大する。また、外力がかかった場合には容易に修正できない。そのため、感覚フィードバックが必要である。そこで、[[カルマンフィルター]]による状態の推定(Wolpert et al., 1995)とそれをもとに運動指令を生成する[[最適フィードバック制御]](Todorov & Jordan, 2002)が考えられている。具体的には、順モデルによる予測と実際の感覚フィードバックが重み付け([[カルマンゲイン]])されて状態が推定され、更にその推定を用いて運動指令を生成する([[フィードバックゲイン]])。カルマンゲインとフィードバックゲインの2つのパラメーターを調整して運動指令を最適化する。
軌道が求められたら、それを実行に移すための[[運動指令]]の生成や制御を行わなければならない。正確な運動の実行にあたっては、[[感覚フィードバック]]は実際の運動よりも遅れてしまうため、[[フィードバック制御]]は難しい。したがって、[[フィードフォワード制御]]のモデルが考えられてきた。運動前に運動を計画して、フィードバックを使わずに運動を行うモデルであるが、これには[[順モデル]]や[[逆モデル]]と呼ばれる[[内部モデル]]が必要となる。[[逆モデル]]は軌道から運動指令を生成する。また、[[順モデル]]は、運動指令からフィードバックの予測を行う。この予測によって、より早い運動指令の修正が行われる。しかし、システム内部にはノイズが存在するため、運動時間を経るに従って、誤差が増大する。また、外力がかかった場合には容易に修正できない。そのため、感覚フィードバックが必要である。そこで、[[カルマンフィルター]]による状態の推定(Wolpert et al., 1995)とそれをもとに運動指令を生成する[[最適フィードバック制御]](Todorov & Jordan, 2002)が考えられている。具体的には、順モデルによる予測と実際の感覚フィードバックが重み付け([[カルマンゲイン]])されて状態が推定され、更にその推定を用いて運動指令を生成する([[フィードバックゲイン]])。カルマンゲインとフィードバックゲインの2つのパラメーターを調整して運動指令を最適化する。
==脳内の到達運動制御==
===大脳皮質===
目標の位置に関する視覚情報は、大脳の背側視覚経路、特に頭頂葉で処理されている。もともと網膜中心座標で表現されていた位置情報は、眼球中心座標、頭部中心座標ないし身体中心座標、身体部位中心座標へと座標変換され、頭頂葉の複数の領域で表現される。その空間情報が到達運動や眼球運動に使われる。
 頭頂連合野は、運動前野との結合が強く、上縦束(SLF)と呼ばれる皮質下の線維束で、運動前野と結合している(Thiebaut de Schotten et al., 2012)。この線維束は、3本に分かれており、特に上頭頂小葉と背側運動前野を結ぶ一番背側部の経路(SLF-I)が、特に到達運動に関わっていると考えられているが、一部腹側部の経路(SLF-III)も関わる。この他、一次運動野、小脳、大脳基底核等の領域も到達運動の実現に重要な領域である。
以下にサルの単一ニューロン記録で、明らかになった到達運動に関わると考えられる領域のニューロンの性質を述べる。
====SLF-Iによって結ばれる領域====
356

回編集