「味覚受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
1行目: 1行目:
英:taste receptor、gustatory receptor 独:Geschmacksrezeptor 仏:récepteurs gustatifs
英:taste receptor、gustatory receptor 独:Geschmacksrezeptor 仏:récepteurs gustatifs  


 味覚受容体は、接触した[[wikipedia:JA:化学物質|化学物質]]を検出するための受容体で、1999年に、[[味細胞]]に発現する7回膜貫通型の[[Gタンパク質共役型受容体]]として初めて哺乳類から同定された<ref><pubmed> 10052456 </pubmed></ref>。その後、[[wikipedia:JA:分子生物学的手法|分子生物学的手法]]や[[wikipedia:JA:ゲノムプロジェクト|ゲノムプロジェクト]]の発展に伴い、各種モデル動物の味覚受容体遺伝子のクローニングが進み、同時に受容体に対する[[リガンド]](ligand)も特定されていった<ref><pubmed> 19837029 </pubmed></ref>。  
 味覚受容体は、接触した[[wikipedia:JA:化学物質|化学物質]]を検出するための受容体で、1999年に、[[味細胞]]に発現する7回膜貫通型の[[Gタンパク質共役型受容体]]として初めて哺乳類から同定された<ref><pubmed> 10052456 </pubmed></ref>。その後、[[wikipedia:JA:分子生物学的手法|分子生物学的手法]]や[[wikipedia:JA:ゲノムプロジェクト|ゲノムプロジェクト]]の発展に伴い、各種モデル動物の味覚受容体遺伝子のクローニングが進み、同時に受容体に対する[[リガンド]](ligand)も特定されていった<ref><pubmed> 19837029 </pubmed></ref>。  
15行目: 15行目:
 味覚受容体は、一般的なGタンパク質共役型受容体と比較すると種間のアミノ酸配列の相違が大きく、この相違が種間の味覚の違いを生んでいることが示されている。例えばマウスでは、大部分のL型[[wikipedia:JA:アミノ酸|アミノ酸]]がうま味として認識されるのに対して、ヒトではL型[[グルタミン酸]]やL型[[アスパラギン酸]]しか強く認識されない<ref><pubmed> 11894099 </pubmed></ref>。  
 味覚受容体は、一般的なGタンパク質共役型受容体と比較すると種間のアミノ酸配列の相違が大きく、この相違が種間の味覚の違いを生んでいることが示されている。例えばマウスでは、大部分のL型[[wikipedia:JA:アミノ酸|アミノ酸]]がうま味として認識されるのに対して、ヒトではL型[[グルタミン酸]]やL型[[アスパラギン酸]]しか強く認識されない<ref><pubmed> 11894099 </pubmed></ref>。  


====うま味/甘味受容体(T1Rファミリー)====
==== うま味/甘味受容体(T1Rファミリー) ====


 T1Rファミリーには、[[T1R1]]、[[T1R2]]、[[T1R3]]の3種類のサブユニットがあり、T1R1とT1R3がヘテロ2量体を形成している場合はグルタミン酸などのうま味物質の受容体として<ref><pubmed> 11894099 </pubmed></ref>、T1R2とT1R3がヘテロ2量体を形成している際は[[糖]]や[[グリシン]]、甘味を持つタンパク質([[wikipedia:JA:モネリン|モネリン]]や[[wikipedia:JA:ソーマチン|ソーマチン]])などの受容体として機能する<ref><pubmed> 14636554 </pubmed></ref><ref><pubmed> 11509186 </pubmed></ref><ref><pubmed> 11894099 </pubmed></ref>。
 T1Rファミリーには、[[T1R1]]、[[T1R2]]、[[T1R3]]の3種類のサブユニットがあり、T1R1とT1R3がヘテロ2量体を形成している場合はグルタミン酸などのうま味物質の受容体として<ref><pubmed> 11894099 </pubmed></ref>、T1R2とT1R3がヘテロ2量体を形成している際は[[糖]]や[[グリシン]]、甘味を持つタンパク質([[wikipedia:JA:モネリン|モネリン]]や[[wikipedia:JA:ソーマチン|ソーマチン]])などの受容体として機能する<ref><pubmed> 14636554 </pubmed></ref><ref><pubmed> 11509186 </pubmed></ref><ref><pubmed> 11894099 </pubmed></ref>。 うま味受容体に関しては、T1R1/T1R3以外にも、味蕾に発現しているtaste-mGluR4などがグルタミン酸を受容しているという報告がある<ref><pubmed> 10649565 </pubmed></ref>。


====苦味受容体(T2Rファミリー)====
==== 苦味受容体(T2Rファミリー) ====


 T2Rファミリーには多種の受容体が存在し、マウスでは30種類ほどある<ref><pubmed> 10761934 </pubmed></ref>。T2Rファミリー受容体の大部分は同じ細胞に共発現し、ヘテロオリゴマーを形成して苦味物質を検出する<ref><pubmed> 20212011 </pubmed></ref>。  
 T2Rファミリーには多種の受容体が存在し、マウスでは30種類ほどある<ref><pubmed> 10761934 </pubmed></ref>。T2Rファミリー受容体の大部分は同じ細胞に共発現し、ヘテロオリゴマーを形成して苦味物質を検出する<ref><pubmed> 20212011 </pubmed></ref>。  
27行目: 27行目:
 Gタンパク質共役型受容体が味物質と結合してGタンパク質を活性化するのとは対照的に、イオンチャネル型受容体は、細胞外のH<sup>+</sup>(酸味)やNa<sup>+</sup>(塩味)などのイオンによって開口し、これらのイオンを透過させるイオンチャネルとして働くことにより、味細胞を脱分極させる。  
 Gタンパク質共役型受容体が味物質と結合してGタンパク質を活性化するのとは対照的に、イオンチャネル型受容体は、細胞外のH<sup>+</sup>(酸味)やNa<sup>+</sup>(塩味)などのイオンによって開口し、これらのイオンを透過させるイオンチャネルとして働くことにより、味細胞を脱分極させる。  


====酸味受容体====
==== 酸味受容体 ====


 [[Transient receptor potential channel]](TRP)の1種である[[PKD2L1]]を発現している味細胞を欠くと酸味応答がなくなることが報告されている<ref><pubmed> 16929298 </pubmed></ref>。しかしながら、PKD2L1の膜局在に必要な[[PKD1L3]]を欠損するマウスでも、酸味に対する応答が減少しないことから、PKD2L1が受容体として働いているわけではないようである<ref><pubmed> 21098668 </pubmed></ref>。現在、Zn<sup>2</sup><sup>+</sup>感受性のH<sup>+</sup>チャネルが、酸味受容体として働いていることが示されているが、このチャネルの実体は未同定である<ref><pubmed> 21098668 </pubmed></ref>。  
 [[Transient receptor potential channel]](TRP)の1種である[[PKD2L1]]を発現している味細胞を欠くと酸味応答がなくなることが報告されている<ref><pubmed> 16929298 </pubmed></ref>。しかしながら、PKD2L1の膜局在に必要な[[PKD1L3]]を欠損するマウスでも、酸味に対する応答が減少しないことから、PKD2L1が受容体として働いているわけではないようである<ref><pubmed> 21098668 </pubmed></ref>。現在、Zn<sup>2</sup><sup>+</sup>感受性のH<sup>+</sup>チャネルが、酸味受容体として働いていることが示されているが、このチャネルの実体は未同定である<ref><pubmed> 21098668 </pubmed></ref>。  


====塩味受容体====
==== 塩味受容体 ====


 低濃度の塩味(Na<sup>+</sup>イオン)に対するマウスの嗜好性は、[[アミロライド]]によって抑制されるので、上皮性アミロライド感受性Na<sup>+</sup>チャネル(ENaC)によって、塩味は受容されると考えられている<ref><pubmed> 20107438 </pubmed></ref>。一方で、高濃度の塩味に対する嫌悪は、アミロライドによって抑制されないことから、高濃度の塩味に対する受容は別の機構によると考えられているが、受容体は同定されていない。<br>  
 低濃度の塩味(Na<sup>+</sup>イオン)に対するマウスの嗜好性は、[[アミロライド]]によって抑制されるので、上皮性アミロライド感受性Na<sup>+</sup>チャネル(ENaC)によって、塩味は受容されると考えられている<ref><pubmed> 20107438 </pubmed></ref>。一方で、高濃度の塩味に対する嫌悪は、アミロライドによって抑制されないことから、高濃度の塩味に対する受容は別の機構によると考えられているが、受容体は同定されていない。<br>  
39行目: 39行目:
 進化的には哺乳類とかけはなれた昆虫も、味に対する区分は哺乳類と極めて類似しており、糖や低濃度の塩に対しては嗜好性を示し、高濃度の塩や苦味などは嫌悪する<ref><pubmed> 19837029 </pubmed></ref>。さらに、[[甘味受容体]]の数が、[[苦味受容体]]に比べると少ない点も共通している。ただ、昆虫においては、食べ物を味わう目的以外にも味覚受容が用いられており、例えば、脚にある味覚受容器の味覚受容体が、産卵する宿主植物の持つ化学物質や、求愛相手の[[wikipedia:JA:性フェロモン|性フェロモン]]の検知に関わっていることが報告されている<ref><pubmed> 22086342 </pubmed></ref><ref><pubmed> 22632976 </pubmed></ref>。  
 進化的には哺乳類とかけはなれた昆虫も、味に対する区分は哺乳類と極めて類似しており、糖や低濃度の塩に対しては嗜好性を示し、高濃度の塩や苦味などは嫌悪する<ref><pubmed> 19837029 </pubmed></ref>。さらに、[[甘味受容体]]の数が、[[苦味受容体]]に比べると少ない点も共通している。ただ、昆虫においては、食べ物を味わう目的以外にも味覚受容が用いられており、例えば、脚にある味覚受容器の味覚受容体が、産卵する宿主植物の持つ化学物質や、求愛相手の[[wikipedia:JA:性フェロモン|性フェロモン]]の検知に関わっていることが報告されている<ref><pubmed> 22086342 </pubmed></ref><ref><pubmed> 22632976 </pubmed></ref>。  


 昆虫では、味覚受容体を発現する味細胞は、口吻、咽頭、跗節や交尾器などの感覚子(sensillum)に存在する<ref><pubmed> 8118845 </pubmed></ref>。ショウジョウバエの口吻の1つの感覚子には、[[糖受容細胞]]、[[水受容細胞]]、[[塩受容細胞]]、[[苦味/高濃度塩受容細胞]]の4種類の味細胞、もしくは、[[糖/低塩受容細胞]]、[[苦味/高濃度塩受容細胞]]の2種類の味細胞が含まれている<ref><pubmed>8118845 </pubmed></ref><ref><pubmed> 15389687 </pubmed></ref>。現在までに、ショウジョウバエから68種類の7回膜貫通型受容体遺伝子が同定されており、個々の受容細胞が発現する受容体やその一部のリガンドが明らかになってきている<ref><pubmed> 19660932 </pubmed></ref>。また、7回膜貫通型受容体以外にも、[[上皮性ナトリウムチャネル|上皮性Na<sup>+</sup>チャネル]](ENaC)ファミリーの[[pickpocket28]](PPK28)が、水受容細胞が低浸透圧を検知するために必須であることや、苦味受容体細胞が[[TrpA1]]遺伝子を発現することが[[wikipedia:ja:ワサビ|ワサビ]]の味を感知するために必要であることが報告されている<ref><pubmed> 20364123 </pubmed></ref><ref><pubmed> 16647259 </pubmed></ref>。  
 昆虫では、味覚受容体を発現する味細胞は、口吻、咽頭、跗節や交尾器などの感覚子(sensillum)に存在する<ref><pubmed> 8118845 </pubmed></ref>。ショウジョウバエの口吻の1つの感覚子には、[[糖受容細胞]]、[[水受容細胞]]、[[塩受容細胞]]、[[苦味/高濃度塩受容細胞]]の4種類の味細胞、もしくは、[[糖/低塩受容細胞]]、[[苦味/高濃度塩受容細胞]]の2種類の味細胞が含まれている<ref><pubmed>8118845 </pubmed></ref><ref><pubmed> 15389687 </pubmed></ref>。現在までに、ショウジョウバエから68種類の7回膜貫通型受容体遺伝子が同定されており、個々の受容細胞が発現する受容体やその一部のリガンドが明らかになってきている<ref><pubmed> 19660932 </pubmed></ref>。また、7回膜貫通型受容体以外にも、[[上皮性ナトリウムチャネル|上皮性Na<sup>+</sup>チャネル]](ENaC)ファミリーの[[Pickpocket28]](PPK28)が、水受容細胞が低浸透圧を検知するために必須であることや、苦味受容体細胞が[[TrpA1]]遺伝子を発現することが[[wikipedia:ja:ワサビ|ワサビ]]の味を感知するために必要であることが報告されている<ref><pubmed> 20364123 </pubmed></ref><ref><pubmed> 16647259 </pubmed></ref>。  


 昆虫においても、甘味や苦味に対する受容体は、7回膜貫通型でありGタンパク質共役型であると考えられている。実際にGタンパク質を欠損させると、味覚応答が部分的に低下する<ref><pubmed> 16121192 </pubmed></ref>。しかしながら、近年、これらの受容体はイオンチャネルとしての性質も持ち、昆虫の甘味や苦味に対する受容機構は脊椎動物とは異なることが示唆されている<ref><pubmed> 21709218 </pubmed></ref>。
 昆虫においても、甘味や苦味に対する受容体は、7回膜貫通型でありGタンパク質共役型であると考えられている。実際にGタンパク質を欠損させると、味覚応答が部分的に低下する<ref><pubmed> 16121192 </pubmed></ref>。しかしながら、近年、これらの受容体はイオンチャネルとしての性質も持ち、昆虫の甘味や苦味に対する受容機構は脊椎動物とは異なることが示唆されている<ref><pubmed> 21709218 </pubmed></ref>。  


== 関連項目  ==
== 関連項目  ==
55行目: 55行目:
<references />  
<references />  


 
<br>


(執筆者:田中暢明 担当編集委員:柚崎通介)
(執筆者:田中暢明 担当編集委員:柚崎通介)