「夢」の版間の差分

ナビゲーションに移動 検索に移動
466 バイト追加 、 2016年3月10日 (木)
編集の要約なし
編集の要約なし
 
(他の1人の利用者による、間の7版が非表示)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/read0128219 寒 重之][http://researchmap.jp/read0001026 宮内 哲]</font><br>
<font size="+1">[http://researchmap.jp/read0128219 寒 重之]</font><br>
''大阪大学大学院医学系研究科 疼痛医学寄附講座''<br>
<font size="+1">[http://researchmap.jp/read0001026 宮内 哲*]</font><br>
''国立研究開発法人情報通信研究機構''<br>
''国立研究開発法人情報通信研究機構''<br>
DOI:<selfdoi /> 原稿受付日:2016年2月29日 原稿完成日:2016年月日<br>
DOI:<selfdoi /> 原稿受付日:2016年2月29日 原稿完成日:2016年3月8日<br>
担当編集委員:[http://researchmap.jp/read0048432 定藤 規弘](自然科学研究機構生理学研究所 大脳皮質機能研究系)<br>
担当編集委員:[http://researchmap.jp/read0048432 定藤 規弘](自然科学研究機構生理学研究所 大脳皮質機能研究系)<br>
 *corresponding author
</div>
</div>


英語名:dream 独:Traum 仏:Rêve
英語名:dream 独:Traum 仏:rêve


{{box|text=
{{box|text=
18行目: 21行目:


== 発生機構  ==
== 発生機構  ==
[[ファイル:Hobson2000NRN_fig5.png|350px|thumb|'''図1. AIMモデル'''<ref name="Hobson2002"><pubmed>12209117</pubmed></ref><br>
[[ファイル:Hobson2000NRN_fig5.png|500px|thumb|'''図1. AIMモデル'''<br>
a: すべての意識状態は、皮質の活動レベル(activation: A)、情報の入力源(input source: I)、神経伝達物質による調整(modulation: M)の三次元空間の中に位置づけられる。覚醒(Wake)では、皮質の活動レベル(A)が高く、情報(I)は外界に依存し、調整(M)はノルアドレナリン・セロトニン系が優位で注意の集中状態を維持する。ノンレム睡眠(NREM)では活動レベル(A)やアドレナリン・セロトニン調整系 (M)は弱まり、情報入力源(I)は外因性・内因性の両方となる。さらにレム睡眠(REM)に至ると、活動レベル(A)は再度上昇し、情報入力源(I)は内因性となり、調整(M)はコリン系に移行する。b, c, d: 各次元別(活動レベル(b)、情報入力源(c)、調整(d))に見たレム睡眠時の生理学的現象とメカニズム。レム睡眠では、橋被蓋部の賦活によって活動レベルは高いにもかかわらず(ただし意志、判断、ワーキングメモリーなどの高次脳機能を司る前頭前野のレベルは覚醒時よりも低い)、外部からの入力は遮断され、運動出力もブロックされる。そのため脳は内部で生じる感覚を現実のものと解釈する。さらにPGO-waveによって扁桃体や辺縁系が活動するため情動的な要素が付加される。
'''a''': すべての意識状態は、皮質の活動レベル(activation: A)、情報の入力源(input source: I)、[[神経伝達物質]]による調整(modulation: M)の三次元空間の中に位置づけられる。覚醒(Wake)では、皮質の活動レベル(A)が高く、情報(I)は外界に依存し、調整(M)は[[ノルアドレナリン]]・[[セロトニン]]系が優位で注意の集中状態を維持する。ノンレム睡眠(NREM)では活動レベル(A)やノルアドレナリン・セロトニン調整系 (M)は弱まり、情報入力源(I)は外因性・内因性の両方となる。さらにレム睡眠(REM)に至ると、活動レベル(A)は再度上昇し、情報入力源(I)は内因性となり、調整(M)は[[アセチルコリン|コリン]]系に移行する。<br>'''b, c, d''': 各次元別(活動レベル(b)、情報入力源(c)、調整(d))に見たレム睡眠時の生理学的現象とメカニズム。レム睡眠では、[[橋被蓋部]]の賦活によって活動レベルは高いにもかかわらず(ただし[[意志]]、[[判断]]、[[ワーキングメモリー]]などの高次脳機能を司る[[前頭前野]]のレベルは覚醒時よりも低い)、外部からの入力は遮断され、運動出力もブロックされる。そのため脳は内部で生じる感覚を現実のものと解釈する。さらにPGO-waveによって扁桃体や辺縁系が活動するため情動的な要素が付加される。<br>
<ref name="Hobson2002"><pubmed>12209117</pubmed></ref>より出版所の許可を得て転載。
]]
]]


99行目: 103行目:


=== レム睡眠時の急速眼球運動と夢の関連(走査仮説)  ===
=== レム睡眠時の急速眼球運動と夢の関連(走査仮説)  ===
[[ファイル:Ncomms8884-f2.jpg|350px|thumb|'''図2 覚醒時照明下でのサッケード、レム睡眠時休息眼球運動、覚醒時視覚刺激提示に伴って生じる脳活動'''<ref name="Andrillon2015" /><br>a: [[眼電図]]、b: 頭皮脳波(頭頂葉 Pz)、c: [[内側側頭葉皮質脳波]]、d: [[内側側頭葉]]ニューロン群の発火頻度、e : 海馬傍回における単一ニューロンの発火頻度。レム睡眠時 (REM、中)の急速眼球運動では視覚刺激が無いにもかかわらず、頭皮脳波(b)、皮質脳波(c)、ユニット記録(d, e)のいずれにおいても覚醒時照明下サッケード(WAKE、左)と類似の脳活動が出現している。さらに眼球運動のonset(WAKE, REM)および視覚刺激(VISUAL STIMULATION、右)のonsetから200~400msで、発火頻度の上昇(d)に対応して皮質脳波上に陰性成分が出現している(c)。]]
[[ファイル:Ncomms8884-f2.jpg|500px|thumb|'''図2 覚醒時照明下でのサッケード、レム睡眠時休息眼球運動、覚醒時視覚刺激提示に伴って生じる脳活動'''<br>'''a''': [[眼電図]]、'''b''': 頭皮脳波(頭頂葉 Pz)、'''c''': [[内側側頭葉皮質脳波]]、'''d''': [[内側側頭葉]]ニューロン群の発火頻度、'''e''' : 海馬傍回における単一ニューロンの発火頻度。<br>レム睡眠時 (REM、中)の急速眼球運動では視覚刺激が無いにもかかわらず、頭皮脳波(b)、皮質脳波(c)、ユニット記録(d, e)のいずれにおいても覚醒時照明下サッケード(WAKE、左)と類似の脳活動が出現している。さらに眼球運動のonset(WAKE, REM)および視覚刺激(VISUAL STIMULATION、右)のonsetから200~400msで、発火頻度の上昇(d)に対応して皮質脳波上に陰性成分が出現している(c)。<br><ref name="Andrillon2015" />から引用。元の論文はCC BY license ([http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License])に従い出版された。]]


 1953年にAserinskyとKleitmanがレム睡眠を発見した直後から、「なぜ睡眠中に目が動くのか?」ということが問題になった。レム睡眠中に水平方向の眼球運動が規則正しく出現した被験者を起こして夢内容を聴取したところ、「卓球の試合の夢を見ていた。卓球台の真ん中に立って、球の行方を目で追っていた」という言語報告が得られたことから、「レム睡眠時の急速眼球運動は,覚醒時のサッケードと同様に夢の視覚像を追う(走査する)ために出現する」という説(走査仮説,Scanning hypothesis)が唱えられた<ref name="Dement1957"/><ref name="Roffwarg1962"/>
 1953年にAserinskyとKleitmanがレム睡眠を発見した直後から、「なぜ睡眠中に目が動くのか?」ということが問題になった。レム睡眠中に水平方向の眼球運動が規則正しく出現した被験者を起こして夢内容を聴取したところ、「卓球の試合の夢を見ていた。卓球台の真ん中に立って、球の行方を目で追っていた」という言語報告が得られたことから、「レム睡眠時の急速眼球運動は,覚醒時のサッケードと同様に夢の視覚像を追う(走査する)ために出現する」という説(走査仮説,Scanning hypothesis)が唱えられた<ref name="Dement1957"/><ref name="Roffwarg1962"/>

案内メニュー