「性行動の神経回路」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:


== 研究の歴史 ==
== 研究の歴史 ==
 性行動を引き起こす中枢神経系のしくみを科学的な研究の対象として考えるきっかけを作ったのは、1973年にノーベル医学生理学賞を受賞したフォン・フリッシュ、(K. von Frisch),ローレンツ(K. Lorenz),ティンバーゲン(N. Tinbergen)の3人の功績によるところが大きい。行動を触発する最適刺激が,あるときには弱い反応しか起こさないことやまったく効果を与えないことがある。このように、外的刺激の変化によらず行動の[[閾値]]が変わったりする場合、それは[[動物]]の「内的要因」の強さの変化に起因すると考えられる。逆に、内的要因が強まると、解発刺激がなくても行動が解発されるような応答の閾値の極端な低下が見られることもある。これらのことから,ティンバーゲンは行動の自発性の原因となる内定要因が「行動の動機付け 」を決定する、と考えた。ティンバーゲンは、生まれつき動物に備わっているような生得的反応の内的・外的な要因について詳細に解析していたが、ホルモンの役割については特に注目していた。そして、ホルモンは中枢神経系に作用し、本能的活動と特に関係深い感覚神経系の[[興奮性]]を高めるように作用するのではないか、と考えた。これは、神経科学者にとって大変魅力的な考え方であり、直接実験によって検証しうる、興味深い研究テーマである。
 性行動を引き起こす中枢神経系のしくみを科学的な研究の対象として考えるきっかけを作ったのは、1973年にノーベル医学生理学賞を受賞したフォン・フリッシュ、(K. von Frisch)、ローレンツ(K. Lorenz)、ティンバーゲン(N. Tinbergen)の3人の功績によるところが大きい。行動を触発する最適刺激が,あるときには弱い反応しか起こさないことやまったく効果を与えないことがある。このように、外的刺激の変化によらず行動の[[閾値]]が変わったりする場合、それは[[動物]]の「内的要因」の強さの変化に起因すると考えられる。逆に、内的要因が強まると、解発刺激がなくても行動が解発されるような応答の閾値の極端な低下が見られることもある。これらのことから,ティンバーゲンは行動の自発性の原因となる内定要因が「行動の動機付け」を決定する、と考えた。ティンバーゲンは、生まれつき動物に備わっているような生得的反応の内的・外的な要因について詳細に解析していたが、ホルモンの役割については特に注目していた。そして、ホルモンは中枢神経系に作用し、本能的活動と特に関係深い感覚神経系の[[興奮性]]を高めるように作用するのではないか、と考えた。これは、神経科学者にとって大変魅力的な考え方であり、直接実験によって検証しうる、興味深い研究テーマである。


== 性ステロイドホルモンと性行動 ==
== 性ステロイドホルモンと性行動 ==
[[image:性行動の神経回路1.png|thumb|300px|'''図1.ステロイド取り込み細胞のオートラジオグラム'''<br><ref>'''J.I. Morrell and D.W. Pfaff'''<br>American Zoologist, 18, 447-460. 1978</ref>より改変]]
[[image:性行動の神経回路2.png|thumb|300px|'''図2.(A)キンギョにおけるエストロジェン感受性ニューロンの分布(オートラジオグラム)[文献3)より改変](B)キンギョの脳局所破壊により性行動に有意な変化のあった部位[文献4)より改変](C)ヒメマスの脳局所刺激により性行動が特異的に引き起こされた部位[文献5)より改変]
]]
 研究の歴史に述べたような動物行動学者の研究成果を元にして、特に、こうした動物行動学が初期に盛んであったドイツを中心として、生得的行動の神経機構に対する実証可能な作業仮説をたてて、それを神経生物学的な手法で解析しようとする、神経行動学(ニューロエソロジーNeuroethology)という学問分野が、ヨーロッパから始まり、次第に世界的に研究分野として広まっていった。特筆すべき事として、日本では比較的この研究活動の開始が早く、第1回国際神経行動学会議は、1986年に上智大学を会場として、日本人神経行動学者達が中心となって組織され、開催された。ちなみに、日本における2回目の国際神経行動学会も、2014年に札幌において開催され、多数の参加者で賑わい、改めて日本人科学者の存在感を世界に知らしめた。
 研究の歴史に述べたような動物行動学者の研究成果を元にして、特に、こうした動物行動学が初期に盛んであったドイツを中心として、生得的行動の神経機構に対する実証可能な作業仮説をたてて、それを神経生物学的な手法で解析しようとする、神経行動学(ニューロエソロジーNeuroethology)という学問分野が、ヨーロッパから始まり、次第に世界的に研究分野として広まっていった。特筆すべき事として、日本では比較的この研究活動の開始が早く、第1回国際神経行動学会議は、1986年に上智大学を会場として、日本人神経行動学者達が中心となって組織され、開催された。ちなみに、日本における2回目の国際神経行動学会も、2014年に札幌において開催され、多数の参加者で賑わい、改めて日本人科学者の存在感を世界に知らしめた。


 上述の初期の行動学者達は、本能的行動の生得性に興味を持ち、とりわけ、性行動(「性行動」と「生殖行動」は似ているが、後者が生殖の行為そのものを指すことが多いのに対して、前者は生殖に関わる一連のすべての行動パターンの連鎖を指す、より広義の用語として用いられることが多い。本解説では、より広義の用語である「性行動」を用いる。)には興味を寄せていた。また、ホルモンの機能を研究する内[[分泌]]学者の一部にも、動物が繁殖期に見せる性行動がホルモンによる調節を受けることに興味を寄せていた。例えば、[[カエル]]においては次のような一連の研究がなされている。カエルは産卵期になると生息地から水辺の繁殖地へと移動し、つがいを形成するが、このとき、オスはメイティングコール(mating call, MC)とよばれる鳴き声を発し、メスをひきつける。MCに対する性[[ステロイド]](生殖腺で[[コレステロール]]から合成される[[性ホルモン]])の影響に関しては、脳内への性ステロイドの局所投与や生殖腺除去実験などの多数の研究が見られる。これらの実験から、性ホルモンの影響を受けて性行動を促進する脳部位としては脳の視索前野や[[視床下部]]が重要な脳部位である事がわかってきた。性ステロイドは、いわゆる二次性徴を促し生殖そのものを可能にするという生物学的作用をもつが、同じ性ステロイドが性行動を同時に促進的に調節することにより、生殖と性行動を同時に調節するという、理にかなった調節が可能となっている。
 上述の初期の行動学者達は、本能的行動の生得性に興味を持ち、とりわけ、性行動(「性行動」と「生殖行動」は似ているが、後者が生殖の行為そのものを指すことが多いのに対して、前者は生殖に関わる一連のすべての行動パターンの連鎖を指す、より広義の用語として用いられることが多い。本解説では、より広義の用語である「性行動」を用いる。)には興味を寄せていた。また、ホルモンの機能を研究する内[[分泌]]学者の一部にも、動物が繁殖期に見せる性行動がホルモンによる調節を受けることに興味を寄せていた。例えば、[[カエル]]においては次のような一連の研究がなされている。カエルは産卵期になると生息地から水辺の繁殖地へと移動し、つがいを形成するが、このとき、オスはメイティングコール(mating call, MC)とよばれる鳴き声を発し、メスをひきつける。MCに対する性[[ステロイド]](生殖腺で[[コレステロール]]から合成される[[性ホルモン]])の影響に関しては、脳内への性ステロイドの局所投与や生殖腺除去実験などの多数の研究が見られる。これらの実験から、性ホルモンの影響を受けて性行動を促進する脳部位としては脳の視索前野や[[視床下部]]が重要な脳部位である事がわかってきた。性ステロイドは、いわゆる二次性徴を促し生殖そのものを可能にするという生物学的作用をもつが、同じ性ステロイドが性行動を同時に促進的に調節することにより、生殖と性行動を同時に調節するという、理にかなった調節が可能となっている。


 一方で、性[[ステロイドホルモン]]を用いたオートラジオグラフィーの研究から、性ステロイドを取り込む脳内ニューロンの分布について、[[哺乳類]]、[[両生類]]、魚類等を用いて研究が行なわれた。その結果、動物によらず、視索前野、外側中隔野、[[扁桃体]]、視床下部、[[海馬]]、[[中脳]][[灰白質]]等の脳部位に性ステロイドを感受するニューロンが分布していることがわかった(図1)。興味深いことに、これらの脳部位の多くは、メス[[ラット]]のロードシス行動(雄のマウンティングをやりやすくするような、背中を反らせる行動)などに深く関与することが多くの研究から明らかになっている。たとえば、視床下部[[腹内側核]]や中脳灰[[白質]]は、それらの脳部位を破壊すると性行動が阻害され、電気刺激すると性行動が誘起される<ref>'''D.W. Pfaff'''<br>Estrogens and Brain Function.<br>New York, Heidelberg, Berlin: 1980, Springer-Verlag. 281</ref>。したがって、性ステロイドがこれらの脳部位のニューロンに直接結合することによって、それらのニューロンの活動状態(興奮性)に影響を与え、それが性行動を制御する神経回路を賦活化してロードシス行動が起こることが考えられる。一方、キンギョなどの魚類の脳においてもエストロジェンなどの性ステロイドを取り込むニューロンの分布が調べられたが(図2A)<ref><pubmed>721971</pubmed></ref>、多くのステロイド取り込み細胞の見られた終脳腹側野Vsとよばれる部位や視索前野は、脳の局所破壊を行うことによってオスキンギョの性行動が阻害され(図2B)<ref><pubmed> 6610412 </pubmed></ref>、電気刺激することによって雌雄のヒメマスの性行動が促進される(図2C)ような脳部位<ref><pubmed> 6610412 </pubmed></ref>[5]と極めて似かよった部位であった。
 一方で、性[[ステロイドホルモン]]を用いたオートラジオグラフィーの研究から、性ステロイドを取り込む脳内ニューロンの分布について、[[哺乳類]]、[[両生類]]、魚類等を用いて研究が行なわれた。その結果、動物によらず、視索前野、外側中隔野、[[扁桃体]]、視床下部、[[海馬]]、[[中脳]][[灰白質]]等の脳部位に性ステロイドを感受するニューロンが分布していることがわかった(図1)。興味深いことに、これらの脳部位の多くは、メス[[ラット]]のロードシス行動(雄のマウンティングをやりやすくするような、背中を反らせる行動)などに深く関与することが多くの研究から明らかになっている。たとえば、視床下部[[腹内側核]]や中脳灰[[白質]]は、それらの脳部位を破壊すると性行動が阻害され、電気刺激すると性行動が誘起される<ref>'''D.W. Pfaff'''<br>Estrogens and Brain Function.<br>New York, Heidelberg, Berlin: 1980, Springer-Verlag. 281</ref>。したがって、性ステロイドがこれらの脳部位のニューロンに直接結合することによって、それらのニューロンの活動状態(興奮性)に影響を与え、それが性行動を制御する神経回路を賦活化してロードシス行動が起こることが考えられる。一方、キンギョなどの魚類の脳においてもエストロジェンなどの性ステロイドを取り込むニューロンの分布が調べられたが(図2A)<ref><pubmed>721971</pubmed></ref>、多くのステロイド取り込み細胞の見られた終脳腹側野Vsとよばれる部位や視索前野は、脳の局所破壊を行うことによってオスキンギョの性行動が阻害され(図2B)<ref><pubmed> 6610412 </pubmed></ref>、電気刺激することによって雌雄のヒメマスの性行動が促進される(図2C)ような脳部位<ref><pubmed> 6610412 </pubmed></ref>と極めて似かよった部位であった。


 メスの性ステロイドであるエストロジェンが中枢神経系に及ぼす影響については、従来多数の報告がある。エストロジェンは標的ニューロンの受容体に結合した後、核移行して標的遺伝子の転写活性を調節することによりゆっくりと効果を及ぼす遺伝子レベルの調節が主であると考えられていた。しかしながら、Gタンパク質共役型の膜レセプターを介する速いノンゲノミック作用も知られている<ref><pubmed> 6393162 </pubmed></ref>[6]。ロードシスなどの性行動に対する脳内性ステロイド感受性ニューロンの性行動への関与に関しても、まずは性ステロイドの遺伝子レベルの調節か非遺伝子レベルの調節かをまず厳密に区別し、この作用機構について分子・細胞生物学的観点から今一度見直す必要がある。性行動に関与する脳部位や、性ステロイドの性行動に対する影響などの研究は1970年代から1980年代にかけて比較的盛んに行われていたが、その後研究の大きな進展がないままになっていた。ところが、最近、光遺伝学の技術の発展により、上述の視床下部腹内側核ニューロンにおいて、エストロジェン受容体を発現する少数ニューロンの活性化により、雄のマウンティング様の行動が起きるが、それらの刺激を強くしていくと攻撃行動に転じていく、と言う興味ある研究結果が報告されている<ref><pubmed> 24739975 </pubmed></ref>。このように、遺伝学的技術をイメージングや電気生理学的・形態学的手法と組み合わせる事により、古くから興味を持たれていた問題に対して新たなアプローチが可能となり、性行動の神経回路に対する理解が飛躍的に進むことが期待される。
 メスの性ステロイドであるエストロジェンが中枢神経系に及ぼす影響については、従来多数の報告がある。エストロジェンは標的ニューロンの受容体に結合した後、核移行して標的遺伝子の転写活性を調節することによりゆっくりと効果を及ぼす遺伝子レベルの調節が主であると考えられていた。しかしながら、Gタンパク質共役型の膜レセプターを介する速いノンゲノミック作用も知られている<ref><pubmed> 6393162 </pubmed></ref>。ロードシスなどの性行動に対する脳内性ステロイド感受性ニューロンの性行動への関与に関しても、まずは性ステロイドの遺伝子レベルの調節か非遺伝子レベルの調節かをまず厳密に区別し、この作用機構について分子・細胞生物学的観点から今一度見直す必要がある。性行動に関与する脳部位や、性ステロイドの性行動に対する影響などの研究は1970年代から1980年代にかけて比較的盛んに行われていたが、その後研究の大きな進展がないままになっていた。ところが、最近、光遺伝学の技術の発展により、上述の視床下部腹内側核ニューロンにおいて、エストロジェン受容体を発現する少数ニューロンの活性化により、雄のマウンティング様の行動が起きるが、それらの刺激を強くしていくと攻撃行動に転じていく、と言う興味ある研究結果が報告されている<ref><pubmed> 24739975 </pubmed></ref>。このように、遺伝学的技術をイメージングや電気生理学的・形態学的手法と組み合わせる事により、古くから興味を持たれていた問題に対して新たなアプローチが可能となり、性行動の神経回路に対する理解が飛躍的に進むことが期待される。


== ペプチドホルモンと性行動~GnRHを例として~ ==
== ペプチドホルモンと性行動~GnRHを例として~ ==
 脳内の代表的なペプチドホルモンとして、視床下部ニューロンで産生され、脳底の正中隆起とよばれる部位の脳下垂体門脈血中に放出され、脳下垂体前葉に運ばれて脳下垂体ホルモン放出を促進・抑制する、いわゆる向下垂体ホルモンhypophysiotropic hormoneとよばれるものがある。ここで解説する生殖腺刺激ホルモン放出ホルモン(gonadotropin-releasing hormone, GnRH)はその代表である。近年[[免疫組織化学]]およびin situ hybridization (ISH)を用いた形態学的な研究がなされ、[[脊椎動物]]脳内では、形態的・機能的に異なる以下の3つのGnRH神経系が存在しているという基本的コンセンサスが得られている(図3)<ref><pubmed> 7636018 </pubmed></ref>[8]
 脳内の代表的なペプチドホルモンとして、視床下部ニューロンで産生され、脳底の正中隆起とよばれる部位の脳下垂体門脈血中に放出され、脳下垂体前葉に運ばれて脳下垂体ホルモン放出を促進・抑制する、いわゆる向下垂体ホルモンhypophysiotropic hormoneとよばれるものがある。ここで解説する生殖腺刺激ホルモン放出ホルモン(gonadotropin-releasing hormone, GnRH)はその代表である。近年[[免疫組織化学]]およびin situ hybridization (ISH)を用いた形態学的な研究がなされ、[[脊椎動物]]脳内では、形態的・機能的に異なる以下の3つのGnRH神経系が存在しているという基本的コンセンサスが得られている(図3)<ref><pubmed> 7636018 </pubmed></ref>。
#視索前野GnRH(POA-GnRH)神経系 ;視索前野の細胞体から[[軸索]]を正中隆起に投射して、下垂体門脈系を介して下垂体からの性腺刺激ホルモン(関連項目参照)放出を促進する(ただし、真骨魚においては直接下垂体前葉に投射)。遺伝子はgnrh1。
#視索前野GnRH(POA-GnRH)神経系 ;視索前野の細胞体から[[軸索]]を正中隆起に投射して、下垂体門脈系を介して下垂体からの性腺刺激ホルモン(関連項目参照)放出を促進する(ただし、真骨魚においては直接下垂体前葉に投射)。遺伝子はgnrh1。
#中脳GnRH (Midbrain GnRH)神経系;中脳被蓋に細胞体をもち、脳内に広く軸索投射して主に神経修飾作用をもつ(正中隆起には投射しない)。遺伝子はgnrh2。
#中脳GnRH (Midbrain GnRH)神経系;中脳被蓋に細胞体をもち、脳内に広く軸索投射して主に神経修飾作用をもつ(正中隆起には投射しない)。遺伝子はgnrh2。
#終神経GnRH (Terminal nerve-GnRH; TN-GnRH)神経系;[[終脳]]と[[嗅球]]の境界部に細胞塊を形成し、軸索を脳全体に広く投射しており、主に神経修飾作用をもつ(正中隆起には投射しない)。遺伝子はgnrh3。
#終神経GnRH (Terminal nerve-GnRH; TN-GnRH)神経系;[[終脳]]と[[嗅球]]の境界部に細胞塊を形成し、軸索を脳全体に広く投射しており、主に神経修飾作用をもつ(正中隆起には投射しない)。遺伝子はgnrh3。
 この中で、性行動の神経回路と最も深い関わりを持つのが3)の終神経GnRH3ニューロンである。Okaらは熱帯魚や[[GFP]]トランスジェニックメダカを用いてこれらのニューロンの形態学的・電気生理学的特徴の解析を行うと同時に、これらのニューロンの細胞塊を破壊した熱帯魚の行動学的解析を行い、これらのニューロンが作るGnRH3ペプチドが、脳内に極めて広く張り巡らされた軸索から放出されて引き起こされる神経修飾作用が、熱帯魚の巣作り行動などの行動の動機付けを調節している、と言う説を提唱している<ref><pubmed> 9208402 </pubmed></ref><ref><pubmed> 24312079 </pubmed></ref>[9][10]。最近、遺伝子改変メダカを用いた行動学的実験や電気生理学的実験を組み合わせた研究により、この作業仮説を支持するような実験結果が得られ、今後のさらなる研究が期待されている<ref><pubmed> 24385628 </pubmed></ref>[11]
 
 この中で、性行動の神経回路と最も深い関わりを持つのが3)の終神経GnRH3ニューロンである。Okaらは熱帯魚や[[GFP]]トランスジェニックメダカを用いてこれらのニューロンの形態学的・電気生理学的特徴の解析を行うと同時に、これらのニューロンの細胞塊を破壊した熱帯魚の行動学的解析を行い、これらのニューロンが作るGnRH3ペプチドが、脳内に極めて広く張り巡らされた軸索から放出されて引き起こされる神経修飾作用が、熱帯魚の巣作り行動などの行動の動機付けを調節している、と言う説を提唱している<ref><pubmed> 9208402 </pubmed></ref><ref><pubmed> 24312079 </pubmed></ref>。最近、遺伝子改変メダカを用いた行動学的実験や電気生理学的実験を組み合わせた研究により、この作業仮説を支持するような実験結果が得られ、今後のさらなる研究が期待されている<ref><pubmed> 24385628 </pubmed></ref>。


== 関連項目 ==
== 関連項目 ==
35行目: 40行目:
== 参考文献 ==
== 参考文献 ==
<references />
<references />
1. 岡良隆, 環境に適応した行動を発言させる脊椎動物神経系・内分泌系のしくみ, in 行動とコミュニケーション, 岡・蟻川, Editors. 1998, シリーズ21世紀の動物科学: 東京. p. 197-226.
2. D.W. Pfaff, Estrogens and Brain Function. 1980, New York, Heidelberg, Berlin: Springer-Verlag. 281.
3. Y.S. Kim, W.E. Stumpf, and M. Sar (1978) Journal of Comparative Neurology, 182, 611-620.
4. Y. Koyama, et al. (1984) Behavioral and Neural Biology, 40, 70-86.
5. M. Satou, et al. (1984) Physiology & Behavior, 33, 441-447.
6. J. Qiu, et al. (2006) Journal of Neuroscience, 26, 5649-5655.
7. H. Lee, et al. (2014) Nature, 509, 627-632.
8. N. Yamamoto, et al. (1995) J.Comp.Neurol., 355, 354-368.
9. N. Yamamoto, Y. Oka, and S. Kawashima (1997) Neuroendocrinology., 65, 403.
10. T. Karigo, and Y. Oka (2013) Frontiers in Endocrinology  “Biology of Gonadotropin-Releasing Hormone Neurons”, 4, 177. (Article 177, 1-10)
11. Okuyama, et al. (2014) Science, 343, 91-94.
12. J.I. Morrell and D.W. Pfaff (1978) American Zoologist, 18, 447-460.