「恒常性可塑性」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
(ページの作成:「homeostatic plasticity 神経細胞は発火頻度を一定に保つために、ポストシナプスで神経伝達物質の受容体の数を増減させる、...」)
 
編集の要約なし
 
(3人の利用者による、間の7版が非表示)
1行目: 1行目:
homeostatic plasticity
<div align="right"> 
<font size="+1">井端 啓二</font><br>
''慶應義塾大学 医学部生理学1''<br>
DOI:<selfdoi /> 原稿受付日:2016年3月28日 原稿完成日:2016年月日<br>
担当編集委員:[http://researchmap.jp/haruokasai 河西 春郎](東京大学 大学院医学系研究科)<br>
</div>


神経細胞は発火頻度を一定に保つために、ポスト[[シナプス]]で神経伝達物質の受容体の数を増減させる、[[ナトリウムチャネル]]からのナトリウム[[イオン]]流入量を変化させ[[興奮性]]を変化させる、プレシナプス側の分子に働きかけ伝達物質の放出量を増減させる等の調節によって、神経回路内での自身の神経活動度合いを維持する作用の事である。
英語名:homeostatic plasticity 独:homöostatische Plastizität 仏:plasticité homéostatique


{{box|text= 神経細胞の興奮性が慢性的に向上あるいは低下すると、神経細胞は発火頻度を一定範囲に維持するために、様々なメカニズムを発動する。これを恒常性可塑性という。その分子としては、シナプス後部で神経伝達物質の受容体の数を増減させる、ナトリウムチャネルからのナトリウムイオン流入量を変化させ興奮性を変化させる、シナプス前部の分子に働きかけ伝達物質の放出量を増減させる等などが挙げられる。}}


目次
==恒常性可塑性の発見==
1恒常性可塑性の発見
2分子機構
3生理的機能
4参考文献


'''恒常性可塑性の発見'''
(<u>編集部コメント:概念図のようなものがあればと思います。</u>)
神経細胞は他の神経細胞から入力を受け取り脱分極し、[[閾値]]を越えると神経発火が起こる。成熟した神経回路内では神経細胞は一定の頻度で発火しており、長期増強や[[長期抑圧]]が起こると結果として発火頻度の亢進や低下が生じる事が個体レベルの行動や学習に作用すると考えられている。このような長期増強によるシナプス強度の上昇や、発達期における神経回路内でのシナプス数の増加等によって個々の神経細胞が受け取る入力は増加する。その結果、発火頻度の上昇や、それまでに閾値を越えなかった入力に対しても神経細胞が発火してしまい、神経回路の特性が失われる可能性がある。それを回避するメカニズムの存在が予想されていたが、1998年に独立した2つの研究グループからそれぞれ異なるメカニズムの存在を示す実験結果が報告された[1][2]。Turrigiano研究室において大脳視覚野由来の培養神経細胞に[[テトロドトキシン]]を2日間慢性投与し発火を阻害し、この神経細胞の電気生理学的な解析を行なったところ、AMPA受容体由来微小[[興奮性シナプス]]後電流の振幅が大きくなり、自発的な発火の頻度が上昇した。一方[[GABA受容体]]のアンタゴニストであるビキュキュリンの投与によって神経細胞の発火を活性化させると振幅が小さくなった[1]。[[免疫]]の染色の結果からテトロドトキシン処理後の神経細胞では表面AMPA受容体量が上昇している結果が得られた[3]。これら2つの結果からポストシナプス側で[[グルタミン酸]]に対する感度の上昇が起きた事が判明した。さらに神経細胞の興奮性、intrinsic excitabilityも上昇している実験結果が得られた[4]。一方、Davis研究室においてDrosophila neuromuscular junctionで強制的にシナプス数を増減させたところ、増加したプレシナプスの[[放出確率]]が下がり、減少したプレシナプスからの放出量が増加した[2]。これらの結果から[[筋肉]]からプレシナプス側に逆行性のシグナルが放出されプレシナプスの活性を調節し、シナプス数の増減を補っている事が示唆された。これらの現象からシナプス強度の慢性的な変化に対してポストもしくはプレシナプス側のタンパク質群を調整する事で神経細胞や筋肉がある頻度で発火活動を出来る様に維持をする多様なメカニズムの存在が明らかとなり、この作用は恒常性可塑性(homeostatic plasticity)と命名された。


'''分子機構'''
 神経細胞は他の神経細胞から入力を受け取り[[脱分極]]し、[[閾値]]を越えると神経発火が起こる。成熟した神経回路内では神経細胞は一定の頻度で発火しており、[[長期増強]]や[[長期抑圧]]が起こると結果として[[発火]]頻度の亢進や低下が生じる事が個体レベルの行動や学習に作用すると考えられている。このような長期増強によるシナプス強度の上昇や、発達期における神経回路内でのシナプス数の増加等によって個々の神経細胞が受け取る入力は増加する。その結果、発火頻度の上昇や、それまでに閾値を越えなかった入力に対しても神経細胞が発火してしまい、神経回路の特性が失われる可能性がある。それを回避するメカニズムの存在が予想されていたが、1998年に独立した2つの研究グループからそれぞれ異なるメカニズムの存在を示す実験結果が報告された<ref name=ref1><pubmed>9495341</pubmed></ref> <ref name=ref2><pubmed>9510251</pubmed></ref>
上述した様に恒常性可塑性の作用として、ポストシナプスの表面[[グルタミン酸受容体]]量が増減する事、ナトリウム[[イオンチャネル]]量または性質が変化する事、プレシナプスから放出される伝達物質量が変化する事が明らかにされたが、それらがどの様な細胞内や細胞外シグナルによって引き起こされているかについては詳細には明らかとなっていない。恒常性可塑性に関わる分子として種々の分子が報告されており、神経疾患と両方に関わる分子も存在しているが因果関係は不明である[5]。


 [[w:Gina G. Turrigiano|Turrigiano]]研究室において[[大脳]][[視覚野]]由来の[[培養神経]]細胞に[[テトロドトキシン]]を2日間慢性投与し発火を阻害し、この神経細胞の電気生理学的な解析を行なったところ、[[AMPA型グルタミン酸受容体]]由来[[微小興奮性シナプス後電流]]の振幅が大きくなり、自発的な発火の頻度が上昇した。一方[[GABA受容体]]の[[アンタゴニスト]]である[[ビキュキュリン]]の投与によって神経細胞の発火を活性化させると振幅が小さくなった<ref name=ref1 />。[[免疫染色]]の結果からテトロドトキシン処理後の神経細胞では表面AMPAグルタミン酸受容体量が上昇している結果が得られた<ref name=ref3><pubmed>15772349</pubmed></ref>。これら2つの結果からシナプス後部側で[[グルタミン酸]]に対する感度の上昇が起きた事が判明した。さらに神経細胞の興奮性、[[内在的興奮性]] ([[intrinsic excitability]])も上昇している実験結果が得られた<ref name=ref4><pubmed>10448215</pubmed></ref>。


'''生理的機能'''
 一方、Davis研究室において[[ショウジョウバエ]][[神経筋接合部]]で強制的(<u>編集部コメント:具体的にどのようにでしょうか</u>)にシナプス数を増減させたところ、増加した[[シナプス前部]]からの[[放出確率]]が下がり、一方、減少したシナプス前部からの放出量が増加した<ref name=ref2 />。これらの結果から[[筋肉]]からシナプス前部側に逆行性のシグナルが放出されシナプス前部の活性を調節し、シナプス数の増減を補っている事が示唆された。
生体内で恒常性可塑性が起きている証拠として、片眼遮蔽[[ラット]]からのin vivo記録実験において、遮蔽直後の記録では発火頻度の減少が見られるが、2日後には発火頻度が回復するという実験結果がある[6]。よって恒常性可塑性の作用は生体内でも保持されていると考えられる。しかしながら生理的機能を明らかにするには恒常性可塑性だけを阻害した個体で生理学的、行動学的実験を行う必要があるが、恒常性可塑性だけを阻害する手段がまだ明らかになっていない。


参考文献
 これらの現象からシナプス強度の慢性的な変化に対してポストもしくはシナプス前部のタンパク質群を調整する事で神経細胞や筋肉がある頻度で発火活動を出来る様に維持をする多様なメカニズムの存在が明らかとなり、この作用は恒常性可塑性(homeostatic plasticity)と命名された。
1. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB
Activity-dependent scaling of quantal amplitude in neocortical neurons.
Nature. 1998 Feb 26;391(6670):892-6.
PMID: 9495341


2. Davis GW, Goodman CS
==分子機構==
Synapse-specific control of synaptic efficacy at the terminals of a single neuron.
Nature. 1998 Mar 5;392(6671):82-6.
PMID: 9510251


3. Wierenga CJ, Ibata K, Turrigiano GG
(<u>編集部コメント:この点をもっと詳細に最新の原著を引用しつつご記述いただければと思います。</u>)
Postsynaptic expression of homeostatic plasticity at neocortical synapses.
J Neurosci. 2005 Mar 16;25(11):2895-905.
PMID:15772349


4. Desai NS, Rutherford LC, Turrigiano GG
 上述した様に恒常性可塑性の作用として、シナプス後部の表面[[グルタミン酸受容体]]量が増減する事、[[ナトリウムチャネル]]量または性質が変化する事、シナプス前部から放出される伝達物質量が変化する事が明らかにされたが、それらがどの様な細胞内や細胞外シグナルによって引き起こされているかについては詳細には明らかとなっていない。恒常性可塑性に関わる分子として種々の分子が報告されており、神経疾患と両方に関わる分子も存在しているが因果関係は不明である<ref name=ref5><pubmed>24312013</pubmed></ref>。
Plasticity in the intrinsic excitability of cortical pyramidal neurons.
Nat Neurosci. 1999 Jun;2(6):515-20.
PMID:10448215


5. Wondolowski J, Dickman D
==生理的機能==
Emerging links between homeostatic synaptic plasticity and neurological disease.
 生体内で恒常性可塑性が起きている証拠として、片眼遮蔽[[ラット]]からの''in vivo''記録実験において、遮蔽直後の記録では発火頻度の減少が見られるが、2日後には発火頻度が回復するという実験結果がある<ref name=ref6><pubmed>24139038</pubmed></ref>。よって恒常性可塑性の作用は生体内でも保持されていると考えられる。しかしながら生理的機能を明らかにするには恒常性可塑性だけを阻害した個体で生理学的、行動学的実験を行う必要があるが、恒常性可塑性だけを阻害する手段がまだ明らかになっていない。
Front Cell Neurosci. 2013 Nov 21;7:223.
PMID: 24312013


6. Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG
==参考文献==
Firing rate homeostasis in visual cortex of freely behaving rodents.
<references />
Neuron. 2013 Oct 16;80(2):335-42.
PMID:24139038
 
井端啓二 担当編集委員 林康紀

案内メニュー