「摂食制御の神経回路」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
ネコを用いた破壊実験から、腹内側核に満腹中枢があり、外側野に空腹中枢があると考えられてきた。しかし、過去の破壊実験の多くは近傍の神経線維の破壊を伴うため、単純には解釈できない。例えば、外側野の破壊時には内側前脳束も損傷するが、内側前脳束には摂食行動や報酬行動に重要なドパミン神経線維が豊富に存在する。腹内側核を破壊すると、弓状核からの腹内側核や室傍核への投射線維も破壊されるため、観察される摂食行動変化の原因が腹内側核と弓状核のどちらにあるかを決めることができない。しかし、Cre-loxPシステムを利用した遺伝子改変マウスの開発により、特定の神経細胞集団での遺伝子発現変化が摂食行動や体重制御に与える影響を検討することが可能となり、この10年で摂食制御の神経ネットワークについての理解が大きく進展した。  
ネコを用いた破壊実験から、腹内側核に満腹中枢があり、外側野に空腹中枢があると考えられてきた。しかし、過去の破壊実験の多くは近傍の神経線維の破壊を伴うため、単純には解釈できない。例えば、外側野の破壊時には内側前脳束も損傷するが、内側前脳束には摂食行動や報酬行動に重要なドパミン神経線維が豊富に存在する。腹内側核を破壊すると、弓状核からの腹内側核や室傍核への投射線維も破壊されるため、観察される摂食行動変化の原因が腹内側核と弓状核のどちらにあるかを決めることができない。しかし、Cre-loxPシステムを利用した遺伝子改変マウスの開発により、特定の神経細胞集団での遺伝子発現変化が摂食行動や体重制御に与える影響を検討することが可能となり、この10年で摂食制御の神経ネットワークについての理解が大きく進展した。  


<br>  
[[Image:Neural connection.png|right|500px|図2 NPY/AgRP神経とPOMC神経を中心とした視床下部内の神経回路]]<br>  


'''摂食制御に関わる神経核'''  
'''摂食制御に関わる神経核'''  
28行目: 28行目:


眼窩前頭皮質は、味覚情報が島皮質周辺を経て集まる他、嗅覚や口腔感覚情報が集まり、摂食時の感覚が統合される。さらに、眼窩前頭皮質は側坐核や扁桃体と密な線維連絡を持ち、報酬行動、意思決定に重要な役割を果たすことが知られている。眼窩前頭皮質は空腹時に活性化し、前頭前皮質の運動の実行開始を制御する部位と密な線維連絡を持つことから、摂食に向かう行動開始の決定と実行に重要であると考えられている(Rolls 2005)。  
眼窩前頭皮質は、味覚情報が島皮質周辺を経て集まる他、嗅覚や口腔感覚情報が集まり、摂食時の感覚が統合される。さらに、眼窩前頭皮質は側坐核や扁桃体と密な線維連絡を持ち、報酬行動、意思決定に重要な役割を果たすことが知られている。眼窩前頭皮質は空腹時に活性化し、前頭前皮質の運動の実行開始を制御する部位と密な線維連絡を持つことから、摂食に向かう行動開始の決定と実行に重要であると考えられている(Rolls 2005)。  
 
<div><br>
*側坐核
*側坐核


34行目: 34行目:


<br>  
<br>  
 
<div><br></div>
<u>視床下部</u>  
<u>視床下部</u>  


*弓状核
*弓状核


弓状核は摂食行動制御の中心に位置すると考えられている。弓状核への主な入力は室傍核、内側視索前野、背内側核、外側野、前乳頭核、分界条床核、扁桃体内側核、中隔核であり、出力は室傍核、内側視索前野、背内側核に多い。弓状核には、摂食行動を促進するニューロペプチドY (Neuropeptide Y: NPY)およびアグーチ関連ペプチド(Agrouti-related peptide: AgRP)を産生する神経細胞と、摂食行動を抑制するαメラノサイト刺激ホルモン(α-melanocyte stimulating hormone: α-MSH)を産生する細胞が存在する。NPY産生神経細胞とAgRP産生神経細胞はほぼ同一の細胞集団であることからNPY/AgRP神経細胞と記載されることもある。α-MSH は、プロオピオメラノコルチン(proopiomelanocortin: POMC)神経細胞が産生する前駆体蛋白POMCが酵素によってプロセスされて生成される。POMC神経はコカイン・アンフェタミン調節転写産物(cocaine- and amphetamine-regulated transcript: CART)も産生することからPOMC/CART神経と記載されることもある。NPY、AgRP、α-MSHに加えて、摂食行動抑制作用を示すガラニン様ペプチド(galanin-like peptide: GALP)は視床下部では弓状核のみに発現している。また、弓状核はレプチン受容体やグレリン受容体が最も強く発現している部位である。レプチン受容体シグナルが活性化するとStat3がリン酸化されることからリン酸化Stat3はレプチンによる活性化の指標となっており、レプチン投与後弓状核でのリン酸化Stat3陽性細胞数が著増する。  
弓状核は摂食行動制御の中心に位置すると考えられている。弓状核への主な入力は室傍核、内側視索前野、背内側核、外側野、前乳頭核、分界条床核、扁桃体内側核、中隔核であり、出力は室傍核、内側視索前野、背内側核に多い。弓状核には、摂食行動を促進するニューロペプチドY (Neuropeptide Y: NPY)およびアグーチ関連ペプチド(Agrouti-related peptide: AgRP)を産生する神経細胞と、摂食行動を抑制するαメラノサイト刺激ホルモン(α-melanocyte stimulating hormone: α-MSH)を産生する細胞が存在する。NPY産生神経細胞とAgRP産生神経細胞はほぼ同一の細胞集団であることからNPY/AgRP神経細胞と記載されることもある。α-MSH は、プロオピオメラノコルチン(proopiomelanocortin: POMC)神経細胞が産生する前駆体蛋白POMCが酵素によってプロセスされて生成される。POMC神経はコカイン・アンフェタミン調節転写産物(cocaine- and amphetamine-regulated transcript: CART)も産生することからPOMC/CART神経と記載されることもある。NPY、AgRP、α-MSHに加えて、摂食行動抑制作用を示すガラニン様ペプチド(galanin-like peptide: GALP)は視床下部では弓状核のみに発現している。また、弓状核はレプチン受容体やグレリン受容体が最も強く発現している部位である。レプチン受容体シグナルが活性化するとStat3がリン酸化されることからリン酸化Stat3はレプチンによる活性化の指標となっており、レプチン投与後弓状核でのリン酸化Stat3陽性細胞数が著増する。 [[Image:Med Hypo Network.png|right|500px|図1 摂食行動制御に関わる主な神経回路]]


*&nbsp;   NPY/AgRP神経
*&nbsp;   NPY/AgRP神経
139行目: 139行目:
Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005&nbsp;; 123: 493-505.<br>Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123-158.<br>Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 2007;117:2325-2336.<br>Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S Jr, Elmquist JK, Lowell BB. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 2006&nbsp;;49:191-203.<br>Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo IE, Friedman J. Leptin regulates the reward value of nutrient. Nat Neurosci. 2011 Nov 13;14(12):1562-8.<br>Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, Yanagisawa M. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009; 9: 64-76. <br>Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao XB, Mobbs C, Shulman GI, Diano S, Horvath TL. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med. 2007;13:89-94<br>Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Brüning JC. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005&nbsp;;8:1289-1291.<br>Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10:573-584<br>Maejima Y, Sedbazar U, Suyama S, et al. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab. 2009; 10: 355-65.<br>Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12150-12155.<br>Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004&nbsp;;428(6982):569-574<br>Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537-556.<br>Neary MT, Batterham RL. Gut hormones: implications for the treatment of obesity. Pharmacol Ther. 2009;124:44-56<br>Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007; 449:228-232.<br>Richards MP, Proszkowiec-Weglarz M. Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poult Sci. 2007;86:1478-1490.<br>Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85:45-56.<br>Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007 Mar;8(3):171-81.<br>Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36:199-211.<br>Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT, Matsumoto AM, Palmiter RD. Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12138-12143.<br>Volkoff H, Peter RE. Feeding behavior of fish and its control. Zebrafish. 2006;3:131-40.<br>Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell. 2009; 137:1225-1234.<br>Wu Q, Clark MS, Palmiter RD. Deciphering a neuronal circuit that mediates appetite. Nature. 2012;483:594-547<br>Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009&nbsp;;138:976-989.  
Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005&nbsp;; 123: 493-505.<br>Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123-158.<br>Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 2007;117:2325-2336.<br>Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S Jr, Elmquist JK, Lowell BB. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 2006&nbsp;;49:191-203.<br>Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo IE, Friedman J. Leptin regulates the reward value of nutrient. Nat Neurosci. 2011 Nov 13;14(12):1562-8.<br>Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, Yanagisawa M. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009; 9: 64-76. <br>Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao XB, Mobbs C, Shulman GI, Diano S, Horvath TL. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med. 2007;13:89-94<br>Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Brüning JC. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005&nbsp;;8:1289-1291.<br>Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10:573-584<br>Maejima Y, Sedbazar U, Suyama S, et al. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab. 2009; 10: 355-65.<br>Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12150-12155.<br>Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004&nbsp;;428(6982):569-574<br>Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537-556.<br>Neary MT, Batterham RL. Gut hormones: implications for the treatment of obesity. Pharmacol Ther. 2009;124:44-56<br>Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007; 449:228-232.<br>Richards MP, Proszkowiec-Weglarz M. Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poult Sci. 2007;86:1478-1490.<br>Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85:45-56.<br>Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007 Mar;8(3):171-81.<br>Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36:199-211.<br>Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT, Matsumoto AM, Palmiter RD. Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12138-12143.<br>Volkoff H, Peter RE. Feeding behavior of fish and its control. Zebrafish. 2006;3:131-40.<br>Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell. 2009; 137:1225-1234.<br>Wu Q, Clark MS, Palmiter RD. Deciphering a neuronal circuit that mediates appetite. Nature. 2012;483:594-547<br>Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009&nbsp;;138:976-989.  


(執筆者:船戸弘正、イラスト作成:柿崎美代)<br><br>
(執筆者:船戸弘正、イラスト作成:柿崎美代)<br><br>
</div>
26

回編集