「最初期遺伝子」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
(ページの作成:「最初期遺伝子 英語名:Immediate early genes, Immediate-early genes英語略:IEGs 同義語:IEGs、前初期遺伝子、最初期遺伝子群、前初期遺...」)
 
編集の要約なし
(2人の利用者による、間の15版が非表示)
1行目: 1行目:
最初期遺伝子
<div align="right"> 
英語名:Immediate early genes, Immediate-early genes英語略:IEGs
<font size="+1">[http://researchmap.jp/hiroyukiokuno 奥野 浩行]</font><br>
同義語:IEGs、前初期遺伝子、最初期遺伝子群、前初期遺伝子群
''東京大学''<br>
DOI:<selfdoi /> 原稿受付日:2012年12月25日 原稿完成日:2013年1月30日<br>
担当編集委員:[http://researchmap.jp/haruokasai 河西 春郎](東京大学 大学院医学系研究科)<br>
</div>


要約
英語名:Immediate-early genes 英語略:IEGs
最初期遺伝子(IEGs)は、細胞への刺激に応答して速やかに発現が誘導される一群の遺伝子の総称であり、コードされている蛋白質は転写制御因子、成長因子、細胞骨格など様々なカテゴリーを含む。神経細胞においてはシナプス活動に伴う細胞内カルシウム濃度上昇や神経調節物質によるシグナル活性化などによって最初期遺伝子の発現が誘導される。一部の最初期遺伝子はシナプス可塑性を引き起こす電気刺激や学習・記憶課題によって特定の脳領域に特異的な発現誘導パターンを示すことから、シナプスや神経回路の長期可塑的変化への関与が示唆されている。また、最初期遺伝子の発現は数分~数十分前の神経活動状態をよく反映することから、最初期遺伝子のmRNAや蛋白質は神経活動の分子マーカーとして広く利用されている。


【イントロダクション】
同義語:前初期遺伝子
最初期遺伝子は前初期遺伝子とも呼ばれ、増殖シグナルや分化シグナル等などが細胞へ伝わると、既に細胞内に存在する因子のみを用いて速やかに、且つ、一過的に転写が引き起こされる遺伝子群の総称である。シクロヘキシミドやアニソマイシン等の薬剤によって新規蛋白質合成を阻害していてもmRNAの発現誘導が起こることが定義となる。元来ウイルスの感染初期において、ホスト細胞に存在する転写因子を利用して最初に発現されるウイルス由来遺伝子を指す言葉であったが、現在では細胞外からの刺激に対して最初に応答して発現誘導される内因性の遺伝子を表す言葉として使われるようになった。神経細胞において多くの最初期遺伝子は、シナプス活動や活動電位に伴うカルシウムイオンの流入などによって発現が誘導される”活動依存的遺伝子”である1, 2。脳における代表的な最初期遺伝子としてc-fosやegr-1などの転写制御因子をコードする遺伝子やArc,homer1a/Vesl-1s等のシナプス関連蛋白質をコードする遺伝子が挙げられる。これら遺伝子のmRNAや蛋白質産物は神経活動マーカーとして広く用いられている3,4。


【最初期遺伝子によってコードされる蛋白質】
{{box|text=
最初期遺伝子群のうち、特に神経系で発現誘導される最初期遺伝子の一部をカテゴリー・機能別にリストアップした。
 最初期遺伝子(IEGs)は、細胞への刺激に応答して速やかに発現が誘導される一群の遺伝子の総称であり、コードされているタンパク質は[[転写制御因子]]、[[成長因子]]、[[細胞骨格]]など様々なカテゴリーを含む。神経細胞においては[[シナプス]]活動に伴う細胞内[[カルシウム]]濃度上昇や[[神経調節物質]]によるシグナル活性化などによって最初期遺伝子の発現が誘導される。一部の最初期遺伝子は[[シナプス可塑性]]を引き起こす電気刺激や[[学習]]・[[記憶]]課題によって特定の脳領域に特異的な発現誘導パターンを示すことから、シナプスや神経回路の長期[[可塑的変化]]への関与が示唆されている。また、最初期遺伝子の発現は数分~数十分前の神経活動状態をよく反映することから、最初期遺伝子の[[wikipedia:ja:mRNA|mRNA]]やタンパク質は神経活動の分子マーカーとして広く利用されている。
●転写因子
}}
c-fos, fosB, fra-1, fra-2, c-jun, junB:bZIP蛋白質に属する転写因子
egr1(別名zif268, Krox24, NGFI-A), egr2, egr3:zincフィンガー蛋白質に属する転写因子
●細胞外分泌因子
bdnf, activinb A:成長因子
tPA:蛋白質分解酵素
●細胞内シグナル伝達
rheb: 低分子量G蛋白質
SNK/Plk2: polo様キナーゼ
cox-2: 誘導型シクロオキシゲナーゼ
●シナプス関連蛋白質
Arc/arg3.1:AMPA型受容体調節因子
homer1a/vesl-1s:誘導型EVH蛋白質
narp:神経型ペントラキシン


【発現誘導機構】
== 最初期遺伝子とは ==
最初期遺伝子が刺激後速やかに転写誘導されるメカニズムの詳細はそれぞれの遺伝子によって異なるが、いくつかの最初期遺伝子の上流制御領域の解析により共通点が次第に明らかになりつつある。神経細胞においては、NMDA型グルタミン酸受容体や電位依存性カルシウムチャネルを介して細胞外から流入したカルシウムイオンがカルシウム・カルモジュリン依存的キナーゼ(CaMKs)やMAPキナーゼ(MAPK)などのキナーゼ経路を活性化させ、その結果、非誘導型の転写因子であるcAMP-responsive element binding protein (CREB)やSerum response factor (SRF)、myocyte enhancer factor-2 (MEF2)などのリン酸化スイッチによって活性化されることで最初期遺伝子の転写が開始される5。また、カルシウム依存的蛋白質フォスファターゼ(PP2B)であるカルシニューリンによる脱リン酸化スイッチによる転写開始機構も示唆されている。さらに、上記の転写因子と複合体を形成する補活性化因子(CBP, p300, ElK, CRTC, MKL等)の重要性も明らかになってきた2。
 また、最初期遺伝子の転写は刺激後遅くとも数分以内の非常に早い時間から始まることが知られているが、この早い転写開始に関しては、基底状態において転写開始点下流に結合して待機(ポーズ)しているRNAポリメラーゼII複合体の待機状態が刺激によって解除されるという機構が提唱されている6。


【最初期遺伝子の機能】
 最初期遺伝子は、増殖シグナルや分化シグナル等などが細胞へ伝わると、既に細胞内に存在する因子のみを用いて速やかに、且つ、一過的に転写が引き起こされる遺伝子群の総称である。[[wikipedia:ja:シクロヘキシミド|シクロヘキシミド]]や[[wikipedia:ja:アニソマイシン|アニソマイシン]]等の薬剤によって新規タンパク質合成を阻害していてもmRNAの発現誘導が起こることが定義となる。
最初期遺伝子産物は多種であり機能も多様であるため、個々の遺伝子機能についてはここでは割愛する。刺激によって誘導される最初期遺伝子発現の意義・機能は、1)刺激に対応した細胞特性や性質の変化を引き起こすための蛋白質(転写因子やシナプス関連タンパク等)の新規発現および2)その変化を維持するための材料(細胞骨格関連蛋白質など)の補充であると考えられる。いくつかの最初期遺伝子欠損マウスにおいてはシナプスの長期増強や長期抑圧等のシナプス可塑性の障害、また、長期記憶の形成障害が報告されており、最初期遺伝子の脳の高次機能への関与が示されている7,8。


 元来[[wikipedia:ja:ウイルス|ウイルス]]の感染初期において、ホスト細胞に存在する転写因子を利用して最初に発現されるウイルス由来遺伝子を指す言葉であったが、現在では細胞外からの刺激に対して最初に応答して発現誘導される内因性の遺伝子を表す言葉として使われるようになった。


【参考文献】
 神経細胞において多くの最初期遺伝子は、シナプス活動や[[活動電位]]に伴うカルシウムイオンの流入などによって発現が誘導される”活動依存的遺伝子”である<ref name="ref1"><pubmed>1969743</pubmed></ref> <ref name="ref2"><pubmed>21163309</pubmed></ref>。脳における代表的な最初期遺伝子として[[c-fos]]や[[Egr-1]]などの転写制御因子をコードする遺伝子や[[Arc]],[[Homer1a]]/[[Vesl-1s]]等のシナプス関連タンパク質をコードする遺伝子が挙げられる。これら遺伝子のmRNAやタンパク質産物は神経活動マーカーとして広く用いられている<ref name="ref3"><pubmed>3037702</pubmed></ref> <ref name="ref4"><pubmed>10570490</pubmed></ref>。
1. Sheng, M. & Greenberg, M.E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477-485 (1990).


2. Okuno, H. Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neuroscience research 69, 175-186 (2011).
== 最初期遺伝子によってコードされるタンパク質  ==


3. Morgan, J.I., Cohen, D.R., Hempstead, J.L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science (New York, N.Y 237, 192-197 (1987).
 最初期遺伝子群のうち、特に神経系で発現誘導される最初期遺伝子の一部をカテゴリー・機能別にリストアップした。


4. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. & Worley, P.F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature neuroscience 2, 1120-1124 (1999).
{| border="1"
|+'''表 主な神経系の最初期遺伝子群'''
|-
| colspan="2" |'''転写因子'''
|-
| c-fos、[[FosB]]、[[Fra-1]]、[[Fra-2]]、[[c-jun]]、[[JunB]]
| [[bZIPタンパク質]]に属する転写因子
|-
| [[Egr1]](別名[[Zif268]]、[[Krox24]]、[[NGFI-A]])、[[Egr2]]、[[Egr3]]
| [[Zincフィンガー]]タンパク質に属する転写因子
|-
| colspan="2" |'''細胞外分泌因子'''
|-
| [[脳由来神経栄養因子]]、[[Activin&beta; A]]
| [[成長因子]]
|-
| [[組織プラスミノーゲンアクチベーター]] ([[TPA]])
| [[wikipedia:ja:タンパク質分解酵素|タンパク質分解酵素]]
|-
| colspan="2" |'''細胞内シグナル伝達'''
|-
| [[Rheb]]
| [[低分子量Gタンパク質]]
|-
| [[Plk2]] (別名[[SNK]])
| [[Polo様キナーゼ]]
|-
| [[Cox-2]]
| [[誘導型シクロオキシゲナーゼ]]
|-
| colspan="2" |'''シナプス関連タンパク質'''
|-
| Arc/[[Arg3.1]]
| [[AMPA型グルタミン酸受容体]]調節因子
|-
| homer1a/vesl-1s
| 誘導型EVHドメインタンパク質
|-
| [[Narp]]
| 神経型[[ペントラキシン]]
|}


5. Kawashima, T., et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proceedings of the National Academy of Sciences of the United States of America 106, 316-321 (2009).
Fos: [[FBJ murine osteosarcoma viral oncogene homolog]]; Fra: [[fragile site]]; Jun: [[ jun proto-oncogene]]; Egr: [[early growth response]]; Rheb: [[Ras homolog enriched in brain]]; Plk: [[polo-like kinase]]; Arc: [[activity-regulated cytoskeleton-associated protein]]


6. Saha, R.N., et al. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nature neuroscience 14, 848-856 (2011).
== 発現誘導機構 ==


7. Bozon, B., Davis, S. & Laroche, S. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695-701 (2003).
 最初期遺伝子が刺激後速やかに転写誘導されるメカニズムの詳細はそれぞれの遺伝子によって異なるが、いくつかの最初期遺伝子の上流制御領域の解析により共通点が次第に明らかになりつつある。神経細胞においては、[[NMDA型グルタミン酸受容体]]や[[電位依存性カルシウムチャネル]]を介して細胞外から流入したカルシウムイオンが[[カルシウム・カルモジュリン依存的キナーゼ]]([[CaMKs]])や[[MAPキナーゼ]]([[MAPK]])などのキナーゼ経路を活性化させ、その結果、非誘導型の転写因子である[[サイクリックAMP応答配列結合タンパク質]]([[cAMP-responsive element binding protein]], [[CREB]])や[[血清応答因子]]([[Serum response factor]], [[SRF]])、[[myocyte enhancer factor-2]] ([[MEF2]])などのリン酸化スイッチによって活性化されることで最初期遺伝子の転写が開始される<ref name="ref5"><pubmed>19116276</pubmed></ref>。また、[[カルシウム]]依存的[[タンパク質フォスファターゼ]]([[PP2B]])である[[カルシニューリン]]による脱リン酸化スイッチによる転写開始機構も示唆されている。さらに、上記の転写因子と複合体を形成する補活性化因子([[CBP]]、[[p300]]、[[ElK]]、[[CRTC]]、[[MKL]]等)の重要性も明らかになってきた<ref name="ref2" />。


8. Plath, N., et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437-444 (2006).
 また、最初期遺伝子の転写は刺激後遅くとも数分以内の非常に早い時間から始まることが知られているが、この早い転写開始に関しては、基底状態において[[wikipedia:ja:転写開始点下流|転写開始点下流]]に結合して待機(ポーズ)している[[wikipedia:ja:RNAポリメラーゼII複合体|RNAポリメラーゼII複合体]]の待機状態が刺激によって解除されるという機構が提唱されている<ref name="ref6"><pubmed>21623364</pubmed></ref>。


== 最初期遺伝子の機能 ==


 最初期遺伝子産物は多種であり機能も多様であるため、個々の遺伝子機能についてはここでは割愛する。刺激によって誘導される最初期遺伝子発現の意義・機能は、


(執筆者:奥野浩行、担当編集委員:河西春朗)
#刺激に対応した細胞特性や性質の変化を引き起こすためのタンパク質(転写因子やシナプス関連タンパク等)の新規発現 
#その変化を維持するための材料(細胞骨格関連タンパク質など)の補充
 
 と考えられる。いくつかの最初期遺伝子欠損マウスにおいてはシナプスの[[長期増強]]や[[長期抑圧]]等のシナプス可塑性の障害、また、[[長期記憶]]の形成障害が報告されており、最初期遺伝子の脳の高次機能への関与が示されている<ref name="ref7"><pubmed>14622575</pubmed></ref> <ref name="ref8"><pubmed>17088210</pubmed></ref>。
 
==関連項目==
*[[シナプス可塑性]]
*[[長期増強]]
*[[長期抑圧]]
*[[長期記憶]]
*[[カルシウムカルモジュリン依存性蛋白質キナーゼ]]
*[[MAPキナーゼ]]
 
== 参考文献 ==
 
<references />

2014年6月13日 (金) 17:07時点における版

奥野 浩行
東京大学
DOI:10.14931/bsd.3026 原稿受付日:2012年12月25日 原稿完成日:2013年1月30日
担当編集委員:河西 春郎(東京大学 大学院医学系研究科)

英語名:Immediate-early genes 英語略:IEGs

同義語:前初期遺伝子

 最初期遺伝子(IEGs)は、細胞への刺激に応答して速やかに発現が誘導される一群の遺伝子の総称であり、コードされているタンパク質は転写制御因子成長因子細胞骨格など様々なカテゴリーを含む。神経細胞においてはシナプス活動に伴う細胞内カルシウム濃度上昇や神経調節物質によるシグナル活性化などによって最初期遺伝子の発現が誘導される。一部の最初期遺伝子はシナプス可塑性を引き起こす電気刺激や学習記憶課題によって特定の脳領域に特異的な発現誘導パターンを示すことから、シナプスや神経回路の長期可塑的変化への関与が示唆されている。また、最初期遺伝子の発現は数分~数十分前の神経活動状態をよく反映することから、最初期遺伝子のmRNAやタンパク質は神経活動の分子マーカーとして広く利用されている。

最初期遺伝子とは

 最初期遺伝子は、増殖シグナルや分化シグナル等などが細胞へ伝わると、既に細胞内に存在する因子のみを用いて速やかに、且つ、一過的に転写が引き起こされる遺伝子群の総称である。シクロヘキシミドアニソマイシン等の薬剤によって新規タンパク質合成を阻害していてもmRNAの発現誘導が起こることが定義となる。

 元来ウイルスの感染初期において、ホスト細胞に存在する転写因子を利用して最初に発現されるウイルス由来遺伝子を指す言葉であったが、現在では細胞外からの刺激に対して最初に応答して発現誘導される内因性の遺伝子を表す言葉として使われるようになった。

 神経細胞において多くの最初期遺伝子は、シナプス活動や活動電位に伴うカルシウムイオンの流入などによって発現が誘導される”活動依存的遺伝子”である[1] [2]。脳における代表的な最初期遺伝子としてc-fosEgr-1などの転写制御因子をコードする遺伝子やArcHomer1a/Vesl-1s等のシナプス関連タンパク質をコードする遺伝子が挙げられる。これら遺伝子のmRNAやタンパク質産物は神経活動マーカーとして広く用いられている[3] [4]

最初期遺伝子によってコードされるタンパク質

 最初期遺伝子群のうち、特に神経系で発現誘導される最初期遺伝子の一部をカテゴリー・機能別にリストアップした。

表 主な神経系の最初期遺伝子群
転写因子
c-fos、FosBFra-1Fra-2c-junJunB bZIPタンパク質に属する転写因子
Egr1(別名Zif268Krox24NGFI-A)、Egr2Egr3 Zincフィンガータンパク質に属する転写因子
細胞外分泌因子
脳由来神経栄養因子Activinβ A 成長因子
組織プラスミノーゲンアクチベーター (TPA) タンパク質分解酵素
細胞内シグナル伝達
Rheb 低分子量Gタンパク質
Plk2 (別名SNK Polo様キナーゼ
Cox-2 誘導型シクロオキシゲナーゼ
シナプス関連タンパク質
Arc/Arg3.1 AMPA型グルタミン酸受容体調節因子
homer1a/vesl-1s 誘導型EVHドメインタンパク質
Narp 神経型ペントラキシン

Fos: FBJ murine osteosarcoma viral oncogene homolog; Fra: fragile site; Jun: jun proto-oncogene; Egr: early growth response; Rheb: Ras homolog enriched in brain; Plk: polo-like kinase; Arc: activity-regulated cytoskeleton-associated protein

発現誘導機構

 最初期遺伝子が刺激後速やかに転写誘導されるメカニズムの詳細はそれぞれの遺伝子によって異なるが、いくつかの最初期遺伝子の上流制御領域の解析により共通点が次第に明らかになりつつある。神経細胞においては、NMDA型グルタミン酸受容体電位依存性カルシウムチャネルを介して細胞外から流入したカルシウムイオンがカルシウム・カルモジュリン依存的キナーゼCaMKs)やMAPキナーゼMAPK)などのキナーゼ経路を活性化させ、その結果、非誘導型の転写因子であるサイクリックAMP応答配列結合タンパク質(cAMP-responsive element binding protein, CREB)や血清応答因子(Serum response factor, SRF)、myocyte enhancer factor-2MEF2)などのリン酸化スイッチによって活性化されることで最初期遺伝子の転写が開始される[5]。また、カルシウム依存的タンパク質フォスファターゼPP2B)であるカルシニューリンによる脱リン酸化スイッチによる転写開始機構も示唆されている。さらに、上記の転写因子と複合体を形成する補活性化因子(CBPp300ElKCRTCMKL等)の重要性も明らかになってきた[2]

 また、最初期遺伝子の転写は刺激後遅くとも数分以内の非常に早い時間から始まることが知られているが、この早い転写開始に関しては、基底状態において転写開始点下流に結合して待機(ポーズ)しているRNAポリメラーゼII複合体の待機状態が刺激によって解除されるという機構が提唱されている[6]

最初期遺伝子の機能

 最初期遺伝子産物は多種であり機能も多様であるため、個々の遺伝子機能についてはここでは割愛する。刺激によって誘導される最初期遺伝子発現の意義・機能は、

  1. 刺激に対応した細胞特性や性質の変化を引き起こすためのタンパク質(転写因子やシナプス関連タンパク等)の新規発現 
  2. その変化を維持するための材料(細胞骨格関連タンパク質など)の補充

 と考えられる。いくつかの最初期遺伝子欠損マウスにおいてはシナプスの長期増強長期抑圧等のシナプス可塑性の障害、また、長期記憶の形成障害が報告されており、最初期遺伝子の脳の高次機能への関与が示されている[7] [8]

関連項目

参考文献

  1. Sheng, M., & Greenberg, M.E. (1990).
    The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 4(4), 477-85. [PubMed:1969743] [WorldCat] [DOI]
  2. 2.0 2.1 Okuno, H. (2011).
    Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neuroscience research, 69(3), 175-86. [PubMed:21163309] [WorldCat] [DOI]
  3. Morgan, J.I., Cohen, D.R., Hempstead, J.L., & Curran, T. (1987).
    Mapping patterns of c-fos expression in the central nervous system after seizure. Science (New York, N.Y.), 237(4811), 192-7. [PubMed:3037702] [WorldCat] [DOI]
  4. Guzowski, J.F., McNaughton, B.L., Barnes, C.A., & Worley, P.F. (1999).
    Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature neuroscience, 2(12), 1120-4. [PubMed:10570490] [WorldCat] [DOI]
  5. Kawashima, T., Okuno, H., Nonaka, M., Adachi-Morishima, A., Kyo, N., Okamura, M., ..., & Bito, H. (2009).
    Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 316-21. [PubMed:19116276] [PMC] [WorldCat] [DOI]
  6. Saha, R.N., Wissink, E.M., Bailey, E.R., Zhao, M., Fargo, D.C., Hwang, J.Y., ..., & Dudek, S.M. (2011).
    Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nature neuroscience, 14(7), 848-56. [PubMed:21623364] [PMC] [WorldCat] [DOI]
  7. Bozon, B., Davis, S., & Laroche, S. (2003).
    A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron, 40(4), 695-701. [PubMed:14622575] [WorldCat] [DOI]
  8. Plath, N., Ohana, O., Dammermann, B., Errington, M.L., Schmitz, D., Gross, C., ..., & Kuhl, D. (2006).
    Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 52(3), 437-44. [PubMed:17088210] [WorldCat] [DOI]