「樹状突起スパイン」の版間の差分

55行目: 55行目:
 培養神経細胞や脳スライス標本、あるいは生体を用いた実験でシナプス可塑性が確認されている刺激条件として、長期増強(long-term potentiation; LTP)刺激、あるいは[[長期抑制]](long-term depression; [[LTD]])刺激などがある。実際に、生体の記憶・学習の結果、長期増強などの実験的なシナプス可塑性の生じやすさも影響を受けることから、実験的なシナプス可塑性と実際の記憶・学習におけるシナプス可塑性のシグナルの伝達経路は(少なくとも部分的に)共通であると考えられる。
 培養神経細胞や脳スライス標本、あるいは生体を用いた実験でシナプス可塑性が確認されている刺激条件として、長期増強(long-term potentiation; LTP)刺激、あるいは[[長期抑制]](long-term depression; [[LTD]])刺激などがある。実際に、生体の記憶・学習の結果、長期増強などの実験的なシナプス可塑性の生じやすさも影響を受けることから、実験的なシナプス可塑性と実際の記憶・学習におけるシナプス可塑性のシグナルの伝達経路は(少なくとも部分的に)共通であると考えられる。
[[ファイル:Noguchi Spine Fig 3.jpg|サムネイル|'''図3. 樹状突起スパインの体積とスパイン表面の機能的なグルタミン酸受容体数の関係のモデル<ref name=Noguchi2011 /><ref name=Matsuzaki2001 />。<br>A, B.''' ラット海馬培養スライスや生体マウス大脳皮質の神経細胞の樹状突起において、機能的なAMPA型グルタミン酸受容体数はスパイン頭部体積に比例的であることが示された。また、単一スパイン(図の3番のスパイン)にシナプス可塑性刺激(長期増強; Long-term potentiation (LTP) 刺激) を加えたとき、刺激スパインのグルタミン酸受容体数が増加し、スパイン頭部体積も増加した<ref name= Harvey2007 />。]]
[[ファイル:Noguchi Spine Fig 3.jpg|サムネイル|'''図3. 樹状突起スパインの体積とスパイン表面の機能的なグルタミン酸受容体数の関係のモデル<ref name=Noguchi2011 /><ref name=Matsuzaki2001 />。<br>A, B.''' ラット海馬培養スライスや生体マウス大脳皮質の神経細胞の樹状突起において、機能的なAMPA型グルタミン酸受容体数はスパイン頭部体積に比例的であることが示された。また、単一スパイン(図の3番のスパイン)にシナプス可塑性刺激(長期増強; Long-term potentiation (LTP) 刺激) を加えたとき、刺激スパインのグルタミン酸受容体数が増加し、スパイン頭部体積も増加した<ref name= Harvey2007 />。]]
 ケイジドグルタミン酸の2光子光分解法(アンケイジング)を用いて、グルタミン酸を目的スパインに頻回投与することによって、実験的なシナプス可塑性刺激を単一のスパインに与えることが実施されている<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Harvey2007><pubmed>18097401</pubmed></ref><ref name=Hayama2013><pubmed>23974706</pubmed></ref><ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref><ref name=Murakoshi2011><pubmed>21423166</pubmed></ref><ref name=Noguchi2019><pubmed>31558759</pubmed></ref><ref name=Oh2013><pubmed>23269840</pubmed></ref> 。この方法やその他の実験方法を用いた報告から、シナプス長期増強刺激に応じて、樹状突起スパイン表面の機能的なグルタミン酸受容体が増加し、これと同時にスパイン体積の増大が生じることが、げっ歯類海馬脳スライス標本において示された('''図3''')<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref> 。同様にシナプス長期抑制刺激では、表面のグルタミン酸受容体数が減少し、これと同時にスパイン体積減少が生じた<ref name=Oh2013><pubmed>23269840</pubmed></ref><ref name=Zhou2004><pubmed>15572107</pubmed></ref> 。長期増強の際、グルタミン酸受容体は、エキソサイトーシスによって細胞内から細胞膜へ移行し、側方拡散によってシナプス部位へ移動するとされる。一方、長期抑制の際は、受容体のエンドサイトーシスによるスパイン表面からの除去が増加すると考えらえる<ref name=Choquet2018><pubmed>30381423</pubmed></ref> 。エンドサイトーシスはPSD近傍のエンドサイトーシスゾーン(endocytic zones)において主に生じるとされる(文献56)。スパイン体積変化に伴ってアクチン線維のリモデリング(再構成)が生じるが、リモデリング中やリモデリング後もしばらく以前の状態を何らかの形で保持しているのか否かといった問題など、記憶・学習などの基盤となる興味深い課題と思われる<ref name=Borovac2018><pubmed>30004015</pubmed></ref><ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Honkura2008><pubmed>18341992</pubmed></ref><ref name=Nakahata2018><pubmed>30210329</pubmed></ref> 。
 ケイジドグルタミン酸の2光子光分解法(アンケイジング)を用いて、グルタミン酸を目的スパインに頻回投与することによって、実験的なシナプス可塑性刺激を単一のスパインに与えることが実施されている<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Harvey2007><pubmed>18097401</pubmed></ref><ref name=Hayama2013><pubmed>23974706</pubmed></ref><ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref><ref name=Murakoshi2011><pubmed>21423166</pubmed></ref><ref name=Noguchi2019><pubmed>31558759</pubmed></ref><ref name=Oh2013><pubmed>23269840</pubmed></ref> 。この方法やその他の実験方法を用いた報告から、シナプス長期増強刺激に応じて、樹状突起スパイン表面の機能的なグルタミン酸受容体が増加し、これと同時にスパイン体積の増大が生じることが、げっ歯類海馬脳スライス標本において示された('''図3''')<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref> 。同様にシナプス長期抑制刺激では、表面のグルタミン酸受容体数が減少し、これと同時にスパイン体積減少が生じた<ref name=Oh2013><pubmed>23269840</pubmed></ref><ref name=Zhou2004><pubmed>15572107</pubmed></ref>
 
 長期増強の際、グルタミン酸受容体は、エキソサイトーシスによって細胞内から細胞膜へ移行し、側方拡散によってシナプス部位へ移動するとされる。一方、長期抑制の際は、受容体のエンドサイトーシスによるスパイン表面からの除去が増加すると考えらえる<ref name=Choquet2018><pubmed>30381423</pubmed></ref> 。エンドサイトーシスはPSD近傍のエンドサイトーシスゾーン(endocytic zones)において主に生じるとされる<ref name=Cottrell2004><pubmed>15541315</pubmed></ref>。スパイン体積変化に伴ってアクチン線維のリモデリング(再構成)が生じるが、リモデリング中やリモデリング後もしばらく以前の状態を何らかの形で保持しているのか否かといった問題など、記憶・学習などの基盤となる興味深い課題と思われる<ref name=Borovac2018><pubmed>30004015</pubmed></ref><ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Honkura2008><pubmed>18341992</pubmed></ref><ref name=Nakahata2018><pubmed>30210329</pubmed></ref> 。


== スパインが伝える情報と学習 ==
== スパインが伝える情報と学習 ==