「樹状突起スパイン」の版間の差分

編集の要約なし
編集の要約なし
26行目: 26行目:


=== スパイン頭部、スパインネックと機能 ===
=== スパイン頭部、スパインネックと機能 ===
[[ファイル:Noguchi Spine Fig 3.jpg|サムネイル|'''図3. 樹状突起スパインの体積とスパイン表面の機能的なグルタミン酸受容体数の関係のモデル<ref name=Noguchi2011 /><ref name=Matsuzaki2001 />。<br>A, B.''' ラット海馬培養スライスや生体マウス大脳皮質の神経細胞の樹状突起において、機能的なAMPA型グルタミン酸受容体数はスパイン頭部体積に比例的であることが示された。また、単一スパイン(図の3番のスパイン)にシナプス可塑性刺激(長期増強; Long-term potentiation (LTP) 刺激) を加えたとき、刺激スパインのグルタミン酸受容体数が増加し、スパイン頭部体積も増加した<ref name= Harvey2007 />。]]
 スパインは、ふくらんだスパイン頭部(spine head)と、樹状突起本幹と頭部とを結ぶ細いスパインネック(頚部)(spine neck)から成る('''図1''')。形態的特徴から、頭部が大きい「mushroom spine」、頭部が比較的小さく細長い「thin spine」、ネックがほとんど無い「stubby spine」に分類されることもある。スパイン頭部が不明瞭で細長い「フィロポディア」も存在するが厳密にはスパインに分類されない。実際の樹状突起の電子顕微鏡画像や蛍光顕微鏡画像を詳細にみると、頭部あるいはネックの形態はそれぞれのスパインごとに異なっており、それぞれのスパインで独立した制御が可能であることを示している。
 スパインは、ふくらんだスパイン頭部(spine head)と、樹状突起本幹と頭部とを結ぶ細いスパインネック(頚部)(spine neck)から成る('''図1''')。形態的特徴から、頭部が大きい「mushroom spine」、頭部が比較的小さく細長い「thin spine」、ネックがほとんど無い「stubby spine」に分類されることもある。スパイン頭部が不明瞭で細長い「フィロポディア」も存在するが厳密にはスパインに分類されない。実際の樹状突起の電子顕微鏡画像や蛍光顕微鏡画像を詳細にみると、頭部あるいはネックの形態はそれぞれのスパインごとに異なっており、それぞれのスパインで独立した制御が可能であることを示している。


54行目: 55行目:


 培養神経細胞や脳スライス標本、あるいは生体を用いた実験でシナプス可塑性が確認されている刺激条件として、長期増強(long-term potentiation; LTP)刺激、あるいは[[長期抑制]](long-term depression; [[LTD]])刺激などがある。実際に、生体の記憶・学習の結果、長期増強などの実験的なシナプス可塑性の生じやすさも影響を受けることから、実験的なシナプス可塑性と実際の記憶・学習におけるシナプス可塑性のシグナルの伝達経路は(少なくとも部分的に)共通であると考えられる。
 培養神経細胞や脳スライス標本、あるいは生体を用いた実験でシナプス可塑性が確認されている刺激条件として、長期増強(long-term potentiation; LTP)刺激、あるいは[[長期抑制]](long-term depression; [[LTD]])刺激などがある。実際に、生体の記憶・学習の結果、長期増強などの実験的なシナプス可塑性の生じやすさも影響を受けることから、実験的なシナプス可塑性と実際の記憶・学習におけるシナプス可塑性のシグナルの伝達経路は(少なくとも部分的に)共通であると考えられる。
[[ファイル:Noguchi Spine Fig 3.jpg|サムネイル|'''図3. 樹状突起スパインの体積とスパイン表面の機能的なグルタミン酸受容体数の関係のモデル<ref name=Noguchi2011 /><ref name=Matsuzaki2001 />。<br>A, B.''' ラット海馬培養スライスや生体マウス大脳皮質の神経細胞の樹状突起において、機能的なAMPA型グルタミン酸受容体数はスパイン頭部体積に比例的であることが示された。また、単一スパイン(図の3番のスパイン)にシナプス可塑性刺激(長期増強; Long-term potentiation (LTP) 刺激) を加えたとき、刺激スパインのグルタミン酸受容体数が増加し、スパイン頭部体積も増加した<ref name= Harvey2007 />。]]
 
 ケイジドグルタミン酸の2光子光分解法(アンケイジング)を用いて、グルタミン酸を目的スパインに頻回投与することによって、実験的なシナプス可塑性刺激を単一のスパインに与えることが実施されている<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Harvey2007><pubmed>18097401</pubmed></ref><ref name=Hayama2013><pubmed>23974706</pubmed></ref><ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref><ref name=Murakoshi2011><pubmed>21423166</pubmed></ref><ref name=Noguchi2019><pubmed>31558759</pubmed></ref><ref name=Oh2013><pubmed>23269840</pubmed></ref> 。この方法やその他の実験方法を用いた報告から、シナプス長期増強刺激に応じて、樹状突起スパイン表面の機能的なグルタミン酸受容体が増加し、これと同時にスパイン体積の増大が生じることが、げっ歯類海馬脳スライス標本において示された('''図3''')<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref> 。同様にシナプス長期抑制刺激では、表面のグルタミン酸受容体数が減少し、これと同時にスパイン体積減少が生じた<ref name=Oh2013><pubmed>23269840</pubmed></ref><ref name=Zhou2004><pubmed>15572107</pubmed></ref> 。
 ケイジドグルタミン酸の2光子光分解法(アンケイジング)を用いて、グルタミン酸を目的スパインに頻回投与することによって、実験的なシナプス可塑性刺激を単一のスパインに与えることが実施されている<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Harvey2007><pubmed>18097401</pubmed></ref><ref name=Hayama2013><pubmed>23974706</pubmed></ref><ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref><ref name=Murakoshi2011><pubmed>21423166</pubmed></ref><ref name=Noguchi2019><pubmed>31558759</pubmed></ref><ref name=Oh2013><pubmed>23269840</pubmed></ref> 。この方法やその他の実験方法を用いた報告から、シナプス長期増強刺激に応じて、樹状突起スパイン表面の機能的なグルタミン酸受容体が増加し、これと同時にスパイン体積の増大が生じることが、げっ歯類海馬脳スライス標本において示された('''図3''')<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref> 。同様にシナプス長期抑制刺激では、表面のグルタミン酸受容体数が減少し、これと同時にスパイン体積減少が生じた<ref name=Oh2013><pubmed>23269840</pubmed></ref><ref name=Zhou2004><pubmed>15572107</pubmed></ref> 。