「機能欠失実験」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
10行目: 10行目:


== 機能欠失実験の手法  ==
== 機能欠失実験の手法  ==


== 発現量の減少  ==
== 発現量の減少  ==
24行目: 23行目:
==== 人工ヌクレアーゼによる遺伝子ノックアウト  ====
==== 人工ヌクレアーゼによる遺伝子ノックアウト  ====


 人工ヌクレアーゼは、任意の塩基配列に結合するようにデザインされたDNA結合ドメインとDNA切断酵素の切断ドメインを連結させたタンパク質であり、任意の塩基配列を切断すること可能な酵素である(図1)。 [[Image:Takahirohirabayashi fig 1.jpg|thumb|right|300px|図1 人工ヌクレアーゼの構造]] この人工ヌクレアーゼにはDNA配列を認識し、切断するという原理は共通だが、ジンクフィンガーのDNA結合ドメインを利用してDNA配列を認識するZinc Finger nuclease (ZFN), TALEsのDNA結合ドメインを利用しDNA配列を認識するTALENの2種類が主に使用されている。これら人工ヌクレアーゼを導入した細胞内では特定のDNAがdouble-strand breakするが、これを修復するためにNHEJ (Non-Homologous End Joining)機構が働く。この際、高頻度で塩基対の欠失、挿入などの修復エラーが生じ、結果的にフレームシフトを起こすことで遺伝子がノックアウトされる(図2)。[[Image:Takahirohirabayashi_fig_2.jpg|thumb|right|300px|図2 人工ヌクレアーゼによる遺伝子破壊]]この手法はES細胞を必要としないため、これまでES細胞が樹立されておらずジーンターゲティングによる遺伝子ノックアウトが不可能であった動物種でも使用例が報告されている。  
 人工ヌクレアーゼは、任意の塩基配列に結合するようにデザインされたDNA結合ドメインとDNA切断酵素の切断ドメインを連結させたタンパク質であり、任意の塩基配列を切断すること可能な酵素である(図1)。 [[Image:Takahirohirabayashi fig 1.jpg|thumb|right|300px|図1 人工ヌクレアーゼの構造]] この人工ヌクレアーゼにはDNA配列を認識し、切断するという原理は共通だが、ジンクフィンガーのDNA結合ドメインを利用してDNA配列を認識するZinc Finger nuclease (ZFN), TALEsのDNA結合ドメインを利用しDNA配列を認識するTALENの2種類が主に使用されている。これら人工ヌクレアーゼを導入した細胞内では特定のDNAがdouble-strand breakするが、これを修復するためにNHEJ (Non-Homologous End Joining)機構が働く。この際、高頻度で塩基対の欠失、挿入などの修復エラーが生じ、結果的にフレームシフトを起こすことで遺伝子がノックアウトされる(図2)。[[Image:Takahirohirabayashi fig 2.jpg|thumb|right|300px|図2 人工ヌクレアーゼによる遺伝子破壊]]この手法はES細胞を必要としないため、これまでES細胞が樹立されておらずジーンターゲティングによる遺伝子ノックアウトが不可能であった動物種でも使用例が報告されている。  


<br>  
<br>  
48行目: 47行目:
== 機能の減弱  ==
== 機能の減弱  ==


遺伝子変異 機能ドメインに変異
機能を減弱させた変異体を発現することで内在性の正常遺伝子に対して優位に働き正常な機能を減弱させることができる。この変異をドミナントネガティブ体とよぶ。機能を減弱させる変異体には酵素活性部位などの機能ドメインを欠失させたものが使用される。また、目的のタンパク質が持つアミノ酸がリン酸化されることでその機能が増強する場合、そのアミノ酸をリン酸化を受けない他のアミノ酸に置換した変異体を発現することで目的端野悪質のリン酸化による機能の増強を抑制することができる。 一般的にはセリン, スレオニンはアラニン、チロシンはフェニルアラニン、のように類似構造のアミノ酸に置換する。


目的のタンパク質が持つアミノ酸がリン酸化されることでその機能が増強する場合、そのアミノ酸をリン酸化を受けない他のアミノ酸に置換した変異体を発現することでリン酸化による機能の増強を抑制することができる。 一般的にはセリン, スレオニンはアラニン、チロシンはフェニルアラニン、のように類似構造のアミノ酸に置換する。
(執筆者:平林敬浩、八木健 担当編集委員:岡野栄之)
226

回編集