「機能的磁気共鳴画像法」の版間の差分

ナビゲーションに移動 検索に移動
(同じ利用者による、間の3版が非表示)
13行目: 13行目:


== はじめに ==
== はじめに ==
 機能的磁気共鳴画像とは、[[磁気共鳴画像]] (magnetic resonance imaging; MRI)を用いて生体の[[脳]]や[[脊髄]]を一定時間連続的に撮像し、脳活動(神経活動と[[シナプス]]活動等の総和)と相関するMRI信号の変動を非侵襲的に計測する技術である。
 機能的磁気共鳴画像とは、[[磁気共鳴画像法|磁気共鳴画像]] ([[磁気共鳴画像法|magnetic resonance imaging]]; [[磁気共鳴画像法|MRI]])を用いて生体の[[脳]]や[[脊髄]]を一定時間連続的に撮像し、脳活動(神経活動と[[シナプス]]活動等の総和)と相関するMRI信号の変動を非侵襲的に計測する技術である。


 1990年代の初頭に開発されるやいなや、当時ヒト脳機能イメージング研究手法の主流であった[[ポジトロン断層像]]([[PET]])による血流・代謝測定を置き換えた。現在では、脳機能イメージング研究の代名詞として、健常脳の機能分離や機能連関の理解、あるいは精神・神経疾患の病態生理の解明のため、欠かすことのできないツールとなっている。ただしfMRIは、PETと同様、脳活動の本態である神経細胞の電気化学的活動そのものを測定しているのではなく、脳活動の代用マーカー(surrogate marker)としての局所酸素代謝・血流動態を画像化していることには留意が必要である。また、脳活動に由来するfMRI信号の変動は、脳活動以外の要因による信号変動と比較して必ずしも大きくないため、興味のある脳活動を抽出するために適切な画像・信号処理を行うことも重要である。本項目では、脳機能を解明するツールとしてのfMRIの原理、解析法とそれらを応用した脳科学研究の潮流を概説する。
 1990年代の初頭に開発されるやいなや、当時ヒト脳機能イメージング研究手法の主流であった[[ポジトロン断層法]]([[PET]])による血流・代謝測定を置き換えた。現在では、脳機能イメージング研究の代名詞として、健常脳の機能分離や機能連関の理解、あるいは精神・神経疾患の病態生理の解明のため、欠かすことのできないツールとなっている。ただしfMRIは、PETと同様、脳活動の本態である神経細胞の電気化学的活動そのものを測定しているのではなく、脳活動の代用マーカー(surrogate marker)としての局所酸素代謝・血流動態を画像化していることには留意が必要である。また、脳活動に由来するfMRI信号の変動は、脳活動以外の要因による信号変動と比較して必ずしも大きくないため、興味のある脳活動を抽出するために適切な画像・信号処理を行うことも重要である。本項目では、脳機能を解明するツールとしてのfMRIの原理、解析法とそれらを応用した脳科学研究の潮流を概説する。


[[File:Hanakawa_fMRI_Fig1.png|thumb|right|'''図1. 神経血管連関の模式図'''<br>脳血流(CBF)は動脈〜小動脈(arteriole)から流入し、動脈血中では[[wj:赤血球|赤血球]]の[[wj:ヘモグロビン|ヘモグロビン]]は酸素化(oxy-Hb)されている。<br>刺激がない安静時'''(左)'''であっても、酸素は脳の基礎代謝要求により消費される。酸素は毛細血管で脳組織に供給され、酸素化ヘモグロビン(oxy-Hb)は、[[wj:常磁性体|常磁性体]]である還元ヘモグロビン(deoxy-Hb)に変わる。<br>外的刺激などによりシナプス入力と神経活動が増加すると'''(右)'''、局所の酸素・エネルギー代謝要求は安静時と比較して増加する。酸素消費により還元ヘモグロビン(常磁性体)が増加するはずだから、局所磁場が乱れて[[磁気共鳴画像法#T2*緩和|T2*]]が短縮するように思われる(陰性BOLD信号)。しかし、神経血管単位は基礎代謝要求の増加を検知して動脈血の流入を要求量以上に増加させるらしい。この過程には[[プロスタグランジン]](PG)や[[一酸化窒素]](NO)が関わっているとされる。これらの影響の総和として、脳活動が増加する部分ではdeoxy-Hbが相対的に薄まって局所磁場が安定し、T2*延長が観察される。多くのfMRI法ではこのT2*の延長を陽性BOLD信号として計測している。]]
[[File:Hanakawa_fMRI_Fig1.png|thumb|right|'''図1. 神経血管連関の模式図'''<br>脳血流(CBF)は動脈〜小動脈(arteriole)から流入し、動脈血中では[[wj:赤血球|赤血球]]の[[wj:ヘモグロビン|ヘモグロビン]]は酸素化(oxy-Hb)されている。<br>刺激がない安静時'''(左)'''であっても、酸素は脳の基礎代謝要求により消費される。酸素は毛細血管で脳組織に供給され、酸素化ヘモグロビン(oxy-Hb)は、[[wj:常磁性体|常磁性体]]である還元ヘモグロビン(deoxy-Hb)に変わる。<br>外的刺激などによりシナプス入力と神経活動が増加すると'''(右)'''、局所の酸素・エネルギー代謝要求は安静時と比較して増加する。酸素消費により還元ヘモグロビン(常磁性体)が増加するはずだから、局所磁場が乱れて[[磁気共鳴画像法#T2*緩和|T2*]]が短縮するように思われる(陰性BOLD信号)。しかし、神経血管単位は基礎代謝要求の増加を検知して動脈血の流入を要求量以上に増加させるらしい。この過程には[[プロスタグランジン]](PG)や[[一酸化窒素]](NO)が関わっているとされる。これらの影響の総和として、脳活動が増加する部分ではdeoxy-Hbが相対的に薄まって局所磁場が安定し、T2*延長が観察される。多くのfMRI法ではこのT2*の延長を陽性BOLD信号として計測している。]]
== 原理 ==
== 原理 ==
=== BOLD信号の発見 ===
=== BOLD信号の発見 ===
33行目: 34行目:
 脳活動とBOLD信号の相関関係は、外的刺激や課題の無い安静時にも観察される。そもそも課題遂行では脳の酸素代謝は数%しか増えず、脳のエネルギーは課題の無い(task free)安静時(resting state)の活動に大半が消費されている。これは脳が安静時にも組織的かつ活発な自発活動を示すことによる。
 脳活動とBOLD信号の相関関係は、外的刺激や課題の無い安静時にも観察される。そもそも課題遂行では脳の酸素代謝は数%しか増えず、脳のエネルギーは課題の無い(task free)安静時(resting state)の活動に大半が消費されている。これは脳が安静時にも組織的かつ活発な自発活動を示すことによる。


 1990年代後半のPET研究により、[[内側前頭前野]]、[[後部帯状回]]や両側[[外側頭頂葉]]などは、課題遂行時と比べて安静時にむしろ脳血流が増加することが知られていた<ref><pubmed> 25938726</pubmed></ref>。安静時に著明な自発的神経活動を示すこれらの領域は、[[Marcus Raichle|Raichle]]により[[デフォルトモードネットワーク]](default mode network, DMN)と名づけられ、基底状態の脳の統合性に関わる内因性機構として提唱された。一方で、Biswalは1995年に安静状態のfMRIを解析し、両側[[運動感覚野]]の信号が主に0.1Hz以下の低い周波数(f)帯域において1/fのパターンで同期していることを見出していた<ref name=Biswal1995><pubmed> 8524021</pubmed></ref>。このようなfMRI信号同期は、[[安静状態神経ネットワーク]](resting-state network, RSN)が有する機能結合(functional connectivity, FC)を反映すると考えられた。さらに興味深いことに、安静時fMRIにより、Raichleの提唱したDMN内の脳領域間には強い機能結合が存在することがわかった<ref><pubmed> 12506194</pubmed></ref>。このように2つの独立した研究の潮流が融合したことで、安静時fMRIを用いて局所の自発脳活動と領域間の機能結合状態を評価できる可能性に大きな注目が集まった。その後、安静時fMRIの信号同期性がサル脳における神経連絡性に対応していることも判明した<ref name=Ogawa1990></ref>。
 1990年代後半のPET研究により、[[内側前頭前野]]、[[後部帯状回]]や両側[[外側頭頂葉]]などは、課題遂行時と比べて安静時にむしろ脳血流が増加することが知られていた<ref><pubmed> 25938726</pubmed></ref>。安静時に著明な自発的神経活動を示すこれらの領域は、[[w:Marcus Raichle|Raichle]]により[[デフォルトモードネットワーク]](default mode network, DMN)と名づけられ、基底状態の脳の統合性に関わる内因性機構として提唱された。一方で、Biswalは1995年に安静状態のfMRIを解析し、両側[[運動感覚野]]の信号が主に0.1Hz以下の低い周波数(f)帯域において1/fのパターンで同期していることを見出していた<ref name=Biswal1995><pubmed> 8524021</pubmed></ref>。このようなfMRI信号同期は、[[安静状態神経ネットワーク]](resting-state network, RSN)が有する機能結合(functional connectivity, FC)を反映すると考えられた。さらに興味深いことに、安静時fMRIにより、Raichleの提唱したDMN内の脳領域間には強い機能結合が存在することがわかった<ref><pubmed> 12506194</pubmed></ref>。このように2つの独立した研究の潮流が融合したことで、安静時fMRIを用いて局所の自発脳活動と領域間の機能結合状態を評価できる可能性に大きな注目が集まった。その後、安静時fMRIの信号同期性がサル脳における神経連絡性に対応していることも判明した<ref name=Ogawa1990></ref>。


 現在、安静時fMRIの同期現象は、神経連絡を持つ遠隔領域間で同期して発生する自発性のシナプス・神経活動(及びこれらに伴うBOLD効果)に基づいていると考えられている。領域間の同期の詳細を知るための解析手法の改善、覚醒時の基底状態としての意識との関連、精神疾患や[[認知症]]などの病態との関連、神経連絡性との対応などについて研究が進んでいる。
 現在、安静時fMRIの同期現象は、神経連絡を持つ遠隔領域間で同期して発生する自発性のシナプス・神経活動(及びこれらに伴うBOLD効果)に基づいていると考えられている。領域間の同期の詳細を知るための解析手法の改善、覚醒時の基底状態としての意識との関連、精神疾患や[[認知症]]などの病態との関連、神経連絡性との対応などについて研究が進んでいる。
106行目: 107行目:
independent component analysis
independent component analysis


 独立成分分析はデータ駆動型の解析でありブラインド信号分離の技術として多くの分野で活用されている。[[wj:主成分分析|主成分分析]](principle component analysis, PCA)と比べ、データマイニングの手法として柔軟であると考えられている。主成分分析では無相関、つまりベクトルとして直交する成分のセットが解析的に一意に定まる。これに対し独立成分分析では、互いに他の情報を持たないという特性(独立性)が大きくなるよう成分を分離する。無相関であっても独立ではないことがあるから、独立性は相関性よりも柔軟な条件である。確率変数としてデータの空間的な分布を採るか、経時変化を採るかによって、空間的独立成分分析と時間的独立成分分析が可能である。fMRIデータが空間的に高次元であることから、初期のfMRIでの活用は空間的独立成分分析により数十個の独立成分を求めるものであった。神経解剖学的に解釈可能な皮質ネットワークを得ることができデフォルトモードネットワークの同定にも使用される('''図6''')。独立成分分析は従前から脳波など電気生理データのノイズ除去に利用されてきたが、機械学習判別によって個人レベルのfMR元データから構造ノイズ成分を除去する前処理過程にも独立成分分析が利用されている(fMRIデータの前処理の項参照)。
 [[wj:独立成分分析|独立成分分析]]はデータ駆動型の解析でありブラインド信号分離の技術として多くの分野で活用されている。[[wj:主成分分析|主成分分析]](principle component analysis, PCA)と比べ、データマイニングの手法として柔軟であると考えられている。主成分分析では無相関、つまりベクトルとして直交する成分のセットが解析的に一意に定まる。これに対し独立成分分析では、互いに他の情報を持たないという特性(独立性)が大きくなるよう成分を分離する。無相関であっても独立ではないことがあるから、独立性は相関性よりも柔軟な条件である。確率変数としてデータの空間的な分布を採るか、経時変化を採るかによって、空間的独立成分分析と時間的独立成分分析が可能である。fMRIデータが空間的に高次元であることから、初期のfMRIでの活用は空間的独立成分分析により数十個の独立成分を求めるものであった。神経解剖学的に解釈可能な皮質ネットワークを得ることができデフォルトモードネットワークの同定にも使用される('''図6''')。独立成分分析は従前から脳波など電気生理データのノイズ除去に利用されてきたが、機械学習判別によって個人レベルのfMR元データから構造ノイズ成分を除去する前処理過程にも独立成分分析が利用されている(fMRIデータの前処理の項参照)。
   
   
 また、空間的標準化を行った後、複数の個人の安静時fMRIに空間的独立成分分析を適応することで、個人間に共通のネットワークを同定し(グループ独立成分分析)、グループとしての安静状態神経ネットワークを検出することも可能である。さらにこのグループRSNの各個人のデータへのあてはめ(一般線形モデル)を、時間と空間について2回行うことで、個人毎のRSNが得られる。この個人毎の安静状態神経ネットワークを用いた集団解析が可能であり<ref><pubmed> 28348512</pubmed></ref>、病態解明への応用研究も進んでいる。最近は時間分解能の高いfMRIデータが取得されるようになってきたことで、時間的ICAの応用も進み、空間的に重なり合う成分や神経連絡性とも合致する成分の抽出<ref><pubmed> 22323591</pubmed></ref>や、脳全体の広範なノイズの検出に有用であることが分かってきている。ただし独立成分分析の結果の解釈には数学的な仮定(例えば次元数や線形性等)と脳のシステム・神経-血管連関・画像ノイズの妥当性や検証に留意する必要がある<ref><pubmed> 11559959</pubmed></ref>。
 また、空間的標準化を行った後、複数の個人の安静時fMRIに空間的独立成分分析を適応することで、個人間に共通のネットワークを同定し(グループ独立成分分析)、グループとしての安静状態神経ネットワークを検出することも可能である。さらにこのグループRSNの各個人のデータへのあてはめ(一般線形モデル)を、時間と空間について2回行うことで、個人毎のRSNが得られる。この個人毎の安静状態神経ネットワークを用いた集団解析が可能であり<ref><pubmed> 28348512</pubmed></ref>、病態解明への応用研究も進んでいる。最近は時間分解能の高いfMRIデータが取得されるようになってきたことで、時間的ICAの応用も進み、空間的に重なり合う成分や神経連絡性とも合致する成分の抽出<ref><pubmed> 22323591</pubmed></ref>や、脳全体の広範なノイズの検出に有用であることが分かってきている。ただし独立成分分析の結果の解釈には数学的な仮定(例えば次元数や線形性等)と脳のシステム・神経-血管連関・画像ノイズの妥当性や検証に留意する必要がある<ref><pubmed> 11559959</pubmed></ref>。

案内メニュー