「機能的磁気共鳴画像法」の版間の差分

 
100行目: 100行目:
 脳コネクトームには様々な空間スケールがありうる。全脳を観察できるfMRIでは、脳領域間機能結合の正方行列を計算することで、全脳レベル(macroscale)の機能的コネクトーム解析が可能である。fMRIでは各脳領域間の連絡の強さの指標を機能結合(functional connetivity, FC)と呼ぶ。FCの産出法としては領域間の時系列信号の[[wj:ピアソン相関係数|ピアソン相関係数]]が良く使われる<ref name=Biswal1995></ref>。ある特定の脳領域を関心領域(シード)として設定し、相手方の関心領域(または体素)を、全脳に渡って隙間なく設定した相関解析を行えば、特定のシードに対する脳全体の機能結合マップが得られる。例えば、安静時fMRI解析において後部帯状回に関心領域を設定すれば、PETで見られたデフォルトモードネットワークが安静状態神経ネットワークとして抽出できる<ref><pubmed> 12506194</pubmed></ref><ref><pubmed> 17476267</pubmed></ref>。さらにシードを全脳の関心領域すべてに設定することで、多対多の網羅的な機能結合、すなわち機能的コネクトームが算出できる。
 脳コネクトームには様々な空間スケールがありうる。全脳を観察できるfMRIでは、脳領域間機能結合の正方行列を計算することで、全脳レベル(macroscale)の機能的コネクトーム解析が可能である。fMRIでは各脳領域間の連絡の強さの指標を機能結合(functional connetivity, FC)と呼ぶ。FCの産出法としては領域間の時系列信号の[[wj:ピアソン相関係数|ピアソン相関係数]]が良く使われる<ref name=Biswal1995></ref>。ある特定の脳領域を関心領域(シード)として設定し、相手方の関心領域(または体素)を、全脳に渡って隙間なく設定した相関解析を行えば、特定のシードに対する脳全体の機能結合マップが得られる。例えば、安静時fMRI解析において後部帯状回に関心領域を設定すれば、PETで見られたデフォルトモードネットワークが安静状態神経ネットワークとして抽出できる<ref><pubmed> 12506194</pubmed></ref><ref><pubmed> 17476267</pubmed></ref>。さらにシードを全脳の関心領域すべてに設定することで、多対多の網羅的な機能結合、すなわち機能的コネクトームが算出できる。


 このような機能的コネクトーム解析を行う際には、通常のピアソンの相関係数ではなく[[wj:偏相関分析|偏相関分析]](partial correlation)を用いることで、2領域間に固有性の高いFCを評価できることが示唆されている<ref><pubmed> 22248579</pubmed></ref>。また機能的コネクトームを用いた新たな機能結合性モデルの提唱や、より高次な解析への展開([[wj:グラフ理論|グラフ理論]]、独立成分分析、機械学習など)、他の指標や測定(脳波や臨床兆候など)との関連付け、疾患バイオマーカーの探索等の様々な研究も行われている。一方でヒトの脳コネクトーム研究単独では結果の妥当性の検証が難しいため、動物脳での検証も重要であり、例えば[[神経連絡トレーサー]]と機能的結合の比較は重要な課題である。
 このような機能的コネクトーム解析を行う際には、通常のピアソンの相関係数ではなく[[wj:偏相関分析|偏相関分析]](partial correlation)を用いることで、2領域間に固有性の高いFCを評価できることが示唆されている<ref><pubmed> 22248579</pubmed></ref>。また機能的コネクトームを用いた新たな機能結合性モデルの提唱や、より高次な解析への展開([[wj:グラフ理論|グラフ理論]]、独立成分分析、機械学習など)、他の指標や測定(脳波や臨床兆候など)との関連付け、疾患バイオマーカーの探索等の様々な研究も行われている。一方でヒトの脳コネクトーム研究単独では結果の妥当性の検証が難しいため、動物脳での検証も重要であり、例えば[[神経連絡トレーサー]]と[[機能的結合]]の比較は重要な課題である。


[[File:Hanakawa_fMRI_Fig6.png|thumb|'''図6. 安静時fMRI画像を前処置後、独立成分分析により得たDMN'''<br>後部帯状回を中心とし頭頂葉、前頭前野前内側部を含むデフォルトモードネットワーク(DMN)。左上は膨らました皮質表面にマッピングしたもの、右上は軸断像に表示、および同ネットワークの信号変化(左下)および周波数分析結果(右下)。周波数0.01-0.1Hzに高いパワーを持つネットワーク活動である。'''図3'''と同じfMRIデータで、動き補正・ノイズ処理を行ったあとに得られたもの。]]
[[File:Hanakawa_fMRI_Fig6.png|thumb|'''図6. 安静時fMRI画像を前処置後、独立成分分析により得たDMN'''<br>後部帯状回を中心とし頭頂葉、前頭前野前内側部を含むデフォルトモードネットワーク(DMN)。左上は膨らました皮質表面にマッピングしたもの、右上は軸断像に表示、および同ネットワークの信号変化(左下)および周波数分析結果(右下)。周波数0.01-0.1Hzに高いパワーを持つネットワーク活動である。'''図3'''と同じfMRIデータで、動き補正・ノイズ処理を行ったあとに得られたもの。]]