「海馬」の版間の差分

61 バイト追加 、 2016年4月21日 (木)
編集の要約なし
 
14行目: 14行目:
==海馬とは==
==海馬とは==


 側脳室下角底部に隆起する[[大脳皮質]]を両側合わせて肉眼的に見ると、[[wikipedia:ja:ギリシャ神話|ギリシャ神話]]に登場する海神[[wikipedia:ja:ポセイドン|ポセイドン]]がまたがる海馬の前肢の形に似ていることから[[wikipedia:ja:イタリア|イタリア]]・[[wikipedia:ja:ボロ−ニャ|ボロ−ニャ]]の解剖学者 [[wikipedia:Julius Caesar Aranzi|Giulio Cesare Arantio]] (1587) は''Hippocampus''(海馬)と命名した。側脳室下角前方へ膨らんだ部分を[[海馬足]](''pes hippocampi'')とよぶ。魚類の[[wikipedia:ja:タツノオトシゴ|タツノオトシゴ]]も''hippocampus'' と呼ばれるが、脳部位の海馬とは独立して神話の海馬から連想して命名されたという<ref>'''小川鼎三'''<br>医学用語の起こり<br>東京書籍 1983, p100</ref>。海馬の別称として、Ram's Horn(羊の角、Winslow, 1732)、''Cornu Ammonis'' ([[wikipedia:ja:エジプト|エジプト]]の太陽神[[wikipedia:ja:アモン|アモン]]神の角、de Garengeot, 1742)などがある。Arantio 自身、''hippocampus''とは別に''vermis bombycinus''(蚕)とも呼んだ。和名の海馬は、Zeepaard(蘭)、Seepferd(独)、sea-horse (英)からの訳である。
 側脳室下角底部に隆起する[[大脳皮質]]を両側合わせて肉眼的に見ると、[[wikipedia:ja:ギリシャ神話|ギリシャ神話]]に登場する海神[[wikipedia:ja:ポセイドン|ポセイドン]]がまたがる海馬の前肢の形に似ていることから[[wikipedia:ja:イタリア|イタリア]]・[[wikipedia:ja:ボロ−ニャ|ボロ−ニャ]]の解剖学者 [[wikipedia:Julius Caesar Aranzi|Giulio Cesare Arantio]] (1587) は''Hippocampus''(海馬)と命名した。側脳室下角前方へ膨らんだ部分を[[海馬足]](''pes hippocampi'')とよぶ。魚類の[[wikipedia:ja:タツノオトシゴ|タツノオトシゴ]]も''hippocampus'' と呼ばれるが、脳部位の海馬とは独立して神話の海馬から[[連想]]して命名されたという<ref>'''小川鼎三'''<br>医学用語の起こり<br>東京書籍 1983, p100</ref>。海馬の別称として、Ram's Horn(羊の角、Winslow, 1732)、''Cornu Ammonis'' ([[wikipedia:ja:エジプト|エジプト]]の太陽神[[wikipedia:ja:アモン|アモン]]神の角、de Garengeot, 1742)などがある。Arantio 自身、''hippocampus''とは別に''vermis bombycinus''(蚕)とも呼んだ。和名の海馬は、Zeepaard(蘭)、Seepferd(独)、sea-horse (英)からの訳である。


 アンモン角の内側面は、まるで小児の歯のような隆起が一列に並んでおり、歯状回と呼ばれる。この構造を初めて図示・記載したのは[[wikipedia:Pierre Tarin|Tarin]] (1750)という。歯状回はもともとは海馬の付属物とされていたようで、[[wikipedia:Félix Vicq-d'Azyr|Vicq d'Azyr]] は「襞彫り様の、あるいは鋸歯状に凹みを成す内縁」と記述した。これを[[wikipedia:Ignaz Döllinger|Döllinger]] (1814) がgezähnte Leiste(歯状縁) と呼び、[[wikipedia:Johann Friedrich Meckel|Meckel]] (1817)が''fascia dentata''とラテン名に訳して使用した。歯状回は、古くは鋸歯状体、海馬歯状膜などとも呼ばれた。
 アンモン角の内側面は、まるで小児の歯のような隆起が一列に並んでおり、歯状回と呼ばれる。この構造を初めて図示・記載したのは[[wikipedia:Pierre Tarin|Tarin]] (1750)という。歯状回はもともとは海馬の付属物とされていたようで、[[wikipedia:Félix Vicq-d'Azyr|Vicq d'Azyr]] は「襞彫り様の、あるいは鋸歯状に凹みを成す内縁」と記述した。これを[[wikipedia:Ignaz Döllinger|Döllinger]] (1814) がgezähnte Leiste(歯状縁) と呼び、[[wikipedia:Johann Friedrich Meckel|Meckel]] (1817)が''fascia dentata''とラテン名に訳して使用した。歯状回は、古くは鋸歯状体、海馬歯状膜などとも呼ばれた。
25行目: 25行目:
===内部構造===
===内部構造===


 大脳皮質は神経細胞の細胞構築により、前頭領域、後頭領域など11の領域 (Area) に大別され、[[嗅脳溝]]より内側部分は海馬領域と呼ばれる<ref>'''Korbinian Brodmann'''<br> Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues<br>''Johann Ambrosius Barth Verlag'', Leipzig, 1909</ref>。海馬領域中、海馬に連続する領域で[[海馬溝]]から[[嗅脳溝]](後方では[[側副溝]])との間は[[海馬傍回]](gyrus parahippocampalis)と呼ばれ、[[海馬台前野]]、[[嗅内野]] (area entorhinalis)、[[嗅脳溝周囲野]]の三領野に区分される。ちなみに、この脳回は、以前は海馬回(gyrus hippocampalis)と呼ばれた。
 大脳皮質は神経細胞の細胞構築により、前頭領域、後頭領域など11の領域 (Area) に大別され、[[嗅脳溝]]より内側部分は海馬領域と呼ばれる<ref>'''Korbinian [[Brodmann]]'''<br> Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues<br>''Johann Ambrosius Barth Verlag'', Leipzig, 1909</ref>。海馬領域中、海馬に連続する領域で[[海馬溝]]から[[嗅脳溝]](後方では[[側副溝]])との間は[[海馬傍回]](gyrus parahippocampalis)と呼ばれ、[[海馬台前野]]、[[嗅内野]] (area entorhinalis)、[[嗅脳溝周囲野]]の三領野に区分される。ちなみに、この脳回は、以前は海馬回(gyrus hippocampalis)と呼ばれた。


===入力線維 ===
===入力線維 ===
31行目: 31行目:
[[image:海馬2.png|thumb|300px|'''図2.内側嗅内野に順行性トレーサーのPHA-Lを注入したときに見られる貫通線維束の軸索終止の分布'''<br>焦茶色に見えるのが、標識された軸索の終末]]
[[image:海馬2.png|thumb|300px|'''図2.内側嗅内野に順行性トレーサーのPHA-Lを注入したときに見られる貫通線維束の軸索終止の分布'''<br>焦茶色に見えるのが、標識された軸索の終末]]


 海馬体への入力路としては、1)嗅内野からの[[貫通線維]]束(図2)、2)[[内側中隔核]]、[[乳頭体上核]]、[[青斑核]]、[[縫線核]]から上行してくる脳弓、および3)反対側CA3と歯状回門からの[[交連線維]]が通る[[腹側海馬交連]]がある。貫通線維束は大脳皮質から記憶の元となる情報を運び、交連線維は海馬内情報処理回路の一部を担い、上行性入力は海馬体内部回路の活動を修飾する。皮質性の貫通線維束とCA3線維は[[グルタミン酸]]、内側中隔核線維は[[アセチルコリン]]と [[GABA]]、乳頭体上核線維は[[ドーパミン]]、青斑核線維は[[アドレナリン]]、縫線核線維は[[セロトニン]]、そして、反対側の歯状回[[多形細胞]]からの線維はGABAを伝達物質としている。
 海馬体への入力路としては、1)嗅内野からの[[貫通線維]]束(図2)、2)[[内側中隔核]]、[[乳頭体上核]]、[[青斑核]]、[[縫線核]]から上行してくる脳弓、および3)反対側CA3と歯状回門からの[[交連線維]]が通る[[腹側海馬交連]]がある。[[貫通線維束]]は大脳皮質から記憶の元となる情報を運び、交連線維は海馬内情報処理回路の一部を担い、上行性入力は海馬体内部回路の活動を修飾する。皮質性の貫通線維束とCA3線維は[[グルタミン酸]]、内側中隔核線維は[[アセチルコリン]]と [[GABA]]、乳頭体上核線維は[[ドーパミン]]、青斑核線維は[[アドレナリン]]、縫線核線維は[[セロトニン]]、そして、反対側の歯状回[[多形細胞]]からの線維はGABAを伝達物質としている。


 貫通線維束は海馬台[[錐体細胞]]層を貫いて分子層へ出て、海馬台(SUB)、アンモン角、歯状回(DG)の分子層に同時に投射する。内側嗅内野(MEA)へ白インゲン豆レクチン(PHA-L)を注入し、取り込んだ細胞から海馬体各領域への[[軸索]]投射および終末分布を可視化した像を図2に示す。嗅内野II層からは歯状回とCA3 へ投射し、外側嗅内野(LEA)からの線維が分子層の表層部分に、内側嗅内野(MEA)からの線維がより深い部分に分布する。III 層からはCA1 と海馬台の分子層および海馬台の最深層に両側性に投射があり、MEAからの投射線維はCA1の近位部(CA3に近い側)と海馬台の遠位部(前海馬台Preに近い側)に終止し、LEAからの投射線維はCA1の遠位部と海馬台の近位部に終止する。したがって、歯状回顆粒細胞とCA3錐体細胞は一様にMEA、LEA両領域からの情報を受けるのに対し、CA1と海馬台錐体細胞は、近位部・遠位部によってMEAのみ、あるいはLEAのみの情報を受ける。他の皮質入力としては、[[wikipedia:ja:サル|サル]]では嗅周皮質や前頭葉からCA1への入力の報告もあるが、[[wikipedia:ja:ラット|ラット]]ではあまり見られない。
 貫通線維束は海馬台[[錐体細胞]]層を貫いて分子層へ出て、海馬台(SUB)、アンモン角、歯状回(DG)の分子層に同時に投射する。内側嗅内野(MEA)へ白インゲン豆レクチン(PHA-L)を注入し、取り込んだ細胞から海馬体各領域への[[軸索]]投射および終末分布を可視化した像を図2に示す。嗅内野II層からは歯状回とCA3 へ投射し、外側嗅内野(LEA)からの線維が分子層の表層部分に、内側嗅内野(MEA)からの線維がより深い部分に分布する。III 層からはCA1 と海馬台の分子層および海馬台の最深層に両側性に投射があり、MEAからの投射線維はCA1の近位部(CA3に近い側)と海馬台の遠位部(前海馬台Preに近い側)に終止し、LEAからの投射線維はCA1の遠位部と海馬台の近位部に終止する。したがって、歯状回顆粒細胞とCA3錐体細胞は一様にMEA、LEA両領域からの情報を受けるのに対し、CA1と海馬台錐体細胞は、近位部・遠位部によってMEAのみ、あるいはLEAのみの情報を受ける。他の皮質入力としては、[[wikipedia:ja:サル|サル]]では嗅周皮質や前頭葉からCA1への入力の報告もあるが、[[wikipedia:ja:ラット|ラット]]ではあまり見られない。
45行目: 45行目:
[[image:海馬6.png|thumb|300px|'''図6.CA3からCA1へのシャッファー側枝の分布を示す図'''<br>文献<ref name=ref7 />より改変]]
[[image:海馬6.png|thumb|300px|'''図6.CA3からCA1へのシャッファー側枝の分布を示す図'''<br>文献<ref name=ref7 />より改変]]


 他の皮質領域と同様に、海馬体にも興奮性の結合と抑制性の結合が存在する(図3)。興奮性ニューロンの概数は、SDラットで、歯状回顆粒細胞が100万、CA3錐体細胞が33万、CA1錐体細胞が42万、海馬台錐体細胞が13万という。[[wikipedia:ja:ヒト|ヒト]]では歯状回顆粒細胞が880万、CA3錐体細胞が232万、CA1錐体細胞が472万である。抑制性細胞の数はよくわかっていない。
 他の皮質領域と同様に、海馬体にも[[興奮性]]の結合と[[抑制性]]の結合が存在する(図3)。興奮性ニューロンの概数は、SD[[ラット]]で、歯状回顆粒細胞が100万、CA3錐体細胞が33万、CA1錐体細胞が42万、海馬台錐体細胞が13万という。[[wikipedia:ja:ヒト|ヒト]]では歯状回顆粒細胞が880万、CA3錐体細胞が232万、CA1錐体細胞が472万である。抑制性細胞の数はよくわかっていない。


==== 歯状回====
==== 歯状回====
 [[分子層]]、[[顆粒細胞層]]、[[多形細胞層]]よりなる。横断面では、顆粒細胞層がCA3錐体細胞層を挟むように「つ」の字形を示し、開いた部分を[[門]](hilus)という。歯状回には興奮性細胞として顆粒細胞と苔状細胞があり、多形細胞層には多種の抑制性細胞がある。歯状回細胞の投射はすべて歯状回とCA3領域にとどまる。[[顆粒細胞]]は[[苔状線維]]によって苔状細胞とCA3錐体細胞に結合する。苔状線維終末は大きく、両種細胞の樹状突起基部にある[[棘状瘤]](thorny excrescence) を包み囲むシナプスを作っている。苔状線維は、海馬長軸(中隔側頭葉軸)に直交する比較的幅の狭い(600 μm程度)領域内(ラメラ)を走行するが、CA3の遠位側に向かうほど長軸方向に広がる。歯状回門には歯状回を長軸方向に結合する興奮性及び抑制性と考えられる細胞が存在する。興奮性と考えられる苔状細胞の軸索は、起始部位から長軸方向に約1mm以上離れたレベルの歯状回分子層へ投射する。他方、抑制性と考えられる歯状回門の細胞は、起始細胞より長軸方向の前後にそれぞれ400μm以内のレベルの歯状回門および分子層に分布し、歯状回顆粒細胞と結合する。つまり、あるレベルの歯状回顆粒細胞が興奮すると、長軸方向に400 μm以内のレベルではネガティブフィードバックがかかり、それより遠位ではポジティブフィードバックがかかる結合構造になっている。
 [[分子層]]、[[顆粒細胞層]]、[[多形細胞層]]よりなる。横断面では、顆粒細胞層がCA3錐体細胞層を挟むように「つ」の字形を示し、開いた部分を[[門]](hilus)という。歯状回には興奮性細胞として顆粒細胞と苔状細胞があり、多形細胞層には多種の抑制性細胞がある。歯状回細胞の投射はすべて歯状回とCA3領域にとどまる。[[顆粒細胞]]は[[苔状線維]]によって苔状細胞とCA3錐体細胞に結合する。苔状線維終末は大きく、両種細胞の樹状突起基部にある[[棘状瘤]](thorny excrescence) を包み囲む[[シナプス]]を作っている。苔状線維は、海馬長軸(中隔側頭葉軸)に直交する比較的幅の狭い(600 μm程度)領域内(ラメラ)を走行するが、CA3の遠位側に向かうほど長軸方向に広がる。歯状回門には歯状回を長軸方向に結合する興奮性及び抑制性と考えられる細胞が存在する。興奮性と考えられる苔状細胞の軸索は、起始部位から長軸方向に約1mm以上離れたレベルの歯状回分子層へ投射する。他方、抑制性と考えられる歯状回門の細胞は、起始細胞より長軸方向の前後にそれぞれ400μm以内のレベルの歯状回門および分子層に分布し、歯状回顆粒細胞と結合する。つまり、あるレベルの歯状回顆粒細胞が興奮すると、長軸方向に400 μm以内のレベルではネガティブフィードバックがかかり、それより遠位ではポジティブフィードバックがかかる結合構造になっている。


==== 海馬(アンモン角)====
==== 海馬(アンモン角)====
=====領域区分=====
=====領域区分=====
 組織学的な領域区分としては、[[wikipedia:Santiago Ramón y Cajal|Cajal]]はアンモン角の上部(背側部)に位置する小錐体細胞群を''regio superieur''、下方の大錐体細胞群を''regio inferieur''と区分したが、現在ではLorente de Nó(1934)<ref>'''Lorente De Nó, R'''<br>Studies on the structure of the cerebral cortex. Continuation of the study of the ammonic system.<br>'' J. Psychol. Neurol.'' 46: 113–177, (1934)</ref>の区分CA1〜CA4領域(CAは''Cornu Ammonis'' に由来する)が一般に用いられることが多い(図3)。CA1が小錐体細胞、CA2〜CA4が大錐体細胞にあたる。CA2は苔状線維を受ける棘状瘤を持たない大錐体細胞群をさす。CA4は歯状回に陥入した門 (hilus) と呼ばれる部分に位置する大錐体細胞群で、[[wikipedia:ja:霊長類|霊長類]]や[[wikipedia:ja:ネコ|ネコ]]で顕著だが、[[wikipedia:ja:齧歯類|齧歯類]]ではCA4の細胞塊は見られず、CA3錐体細胞に似た大型の細胞([[苔状細胞]])が散在するにとどまる。アンモン角には[[脳軟膜]]から[[脳室]]方向に[[分子層]]、[[放線層]]、[[透明層]]、[[錐体細胞層]]、[[上昇層]]が識別される。透明層は苔状線維の走行部位で、CA2、CA1ではこれを欠く。アンモン角の脳室面には、海馬領域への入出力線維からなる海馬白板があり、海馬上縁では[[海馬采]]となり上方で[[脳弓]]へ連続する。
 組織学的な領域区分としては、[[wikipedia:Santiago Ramón y Cajal|Cajal]]はアンモン角の上部(背側部)に位置する小錐体細胞群を''regio superieur''、下方の大錐体細胞群を''regio inferieur''と区分したが、現在ではLorente de Nó(1934)<ref>'''Lorente De Nó, R'''<br>Studies on the structure of the cerebral cortex. Continuation of the study of the ammonic system.<br>'' J. Psychol. Neurol.'' 46: 113–177, (1934)</ref>の区分CA1〜CA4領域(CAは''Cornu Ammonis'' に由来する)が一般に用いられることが多い(図3)。CA1が小錐体細胞、[[CA2]]〜CA4が大錐体細胞にあたる。CA2は苔状線維を受ける棘状瘤を持たない大錐体細胞群をさす。CA4は歯状回に陥入した門 (hilus) と呼ばれる部分に位置する大錐体細胞群で、[[wikipedia:ja:霊長類|霊長類]]や[[wikipedia:ja:ネコ|ネコ]]で顕著だが、[[wikipedia:ja:齧歯類|齧歯類]]ではCA4の細胞塊は見られず、CA3錐体細胞に似た大型の細胞([[苔状細胞]])が散在するにとどまる。アンモン角には[[脳軟膜]]から[[脳室]]方向に[[分子層]]、[[放線層]]、[[透明層]]、[[錐体細胞層]]、[[上昇層]]が識別される。透明層は苔状線維の走行部位で、CA2、CA1ではこれを欠く。アンモン角の脳室面には、海馬領域への入出力線維からなる海馬白板があり、海馬上縁では[[海馬采]]となり上方で[[脳弓]]へ連続する。


=====CA3=====
=====CA3=====
60行目: 60行目:


=====CA1=====
=====CA1=====
 CA1錐体細胞の軸索側枝は、上昇層には若干の終末分布があるが、放線層へは投射しない。また長軸方向へはほとんど投射せず、CA1錐体細胞間には連合性結合がほとんどない。終末は、錐体細胞層下部に位置する抑制性の[[バスケット細胞|籠細胞]]への終止が考えられる。CA1錐体細胞の樹状突起長は平均13.4mmである。樹状突起にある[[棘]]([[スパイン]])の分布密度は部分によって異なり、太い突起ではシャフトに棘が隠れるため、棘の総数を正確に数えることは困難であるが、層毎の棘分布密度と樹状突起の部分長から棘の総数を推定すると、1個のCA1錐体細胞は少なくも約15,000の棘を持つ。そして、約10%が分子層にある。樹状突起のシャフトに終わる抑制性シナプスの数は未だ概算されていない。
 CA1錐体細胞の軸索側枝は、上昇層には若干の終末分布があるが、放線層へは投射しない。また長軸方向へはほとんど投射せず、CA1錐体細胞間には連合性結合がほとんどない。終末は、錐体細胞層下部に位置する抑制性の[[バスケット細胞|籠細胞]]への終止が考えられる。CA1錐体細胞の樹状突起長は平均13.4mmである。樹状突起にある[[棘]]([[スパイン]])の分布密度は部分によって異なり、太い突起ではシャフトに棘が隠れるため、棘の総数を正確に数えることは困難であるが、層毎の棘分布密度と樹状突起の部分長から棘の総数を推定すると、1個のCA1錐体細胞は少なくも約15,000の棘を持つ。そして、約10%が分子層にある。樹状突起のシャフトに終わる[[抑制性シナプス]]の数は未だ概算されていない。


 CA1錐体細胞からは、海馬台錐体細胞層の浅層2/3と分子層に投射し、錐体細胞層深層へは終止しない。また、CA1近位部は海馬台遠位部へ、CA1遠位部は隣接する海馬台近位部へ投射する。CA1錐体細胞の軸索はCA3や歯状回へは投射しないが、抑制性細胞ではCA3や歯状回門に軸索を分布する細胞もあるという。
 CA1錐体細胞からは、海馬台錐体細胞層の浅層2/3と分子層に投射し、錐体細胞層深層へは終止しない。また、CA1近位部は海馬台遠位部へ、CA1遠位部は隣接する海馬台近位部へ投射する。CA1錐体細胞の軸索はCA3や歯状回へは投射しないが、抑制性細胞ではCA3や歯状回門に軸索を分布する細胞もあるという。


 CA1から海馬体以外への出力としては、同側の外側中隔核、嗅内野VI層、前頭前野への投射があるが、中隔側坐核には投射しない。嗅内野投射では、CA1遠位部からLEA、近位部からMEAという局所対応が見られる。
 CA1から海馬体以外への出力としては、同側の外側中隔核、嗅内野VI層、[[前頭前野]]への投射があるが、中隔側坐核には投射しない。嗅内野投射では、CA1遠位部からLEA、近位部からMEAという局所対応が見られる。


===出力===  
===出力===  
82行目: 82行目:
[[image:海馬1.png|thumb|300px|'''図8.記憶回路の神経結合を示す概念図'''<br>青は大脳皮質領域、ピンクは皮質下領域の出力先、橙色は皮質下領域からの入力路]]
[[image:海馬1.png|thumb|300px|'''図8.記憶回路の神経結合を示す概念図'''<br>青は大脳皮質領域、ピンクは皮質下領域の出力先、橙色は皮質下領域からの入力路]]


 海馬は[[大辺縁葉]](le grand lobe linbique, [[wikipedia:ja:ピエール・ポール・ブローカ|Broca]])<ref>'''Paul Broca'''<br>Localisations des fonctions cérébrales. Siège de la faculté du langage articulé.<br>''Bulletin de la Société d"Anthropologie'' 4: 200–208, 1863.</ref>の一部を構成し、[[嗅脳]]に隣接するからか、20世紀中頃まで[[嗅覚]]機能に関与すると考えられていた。しかしBrodal<ref><pubmed>20261820</pubmed></ref>は、これまでの神経結合の所見を検討して、海馬嗅覚皮質説に疑問を示した。[[嗅球]]から海馬への一ないし二シナプス性入力は、現在の解剖・生理実験でも否定的所見が多い。近年、嗅覚の一次中枢としては、[[前頭葉]]下面後部にある[[梨状葉皮質]](pyriform cortex)、[[嗅結節]]、[[扁桃体周囲皮質]]などが同定されている。
 海馬は[[大辺縁葉]](le grand lobe linbique, [[wikipedia:ja:ピエール・ポール・ブローカ|Broca]])<ref>'''Paul Broca'''<br>Localisations des fonctions cérébrales. Siège de la faculté du langage articulé.<br>''Bulletin de la Société d’Anthropologie'' 4: 200–208, 1863.</ref>の一部を構成し、[[嗅脳]]に隣接するからか、20世紀中頃まで[[嗅覚]]機能に関与すると考えられていた。しかしBrodal<ref><pubmed>20261820</pubmed></ref>は、これまでの神経結合の所見を検討して、海馬嗅覚皮質説に疑問を示した。[[嗅球]]から海馬への一ないし二シナプス性入力は、現在の解剖・生理実験でも否定的所見が多い。近年、嗅覚の一次中枢としては、[[前頭葉]]下面後部にある[[梨状葉皮質]](pyriform cortex)、[[嗅結節]]、[[扁桃体周囲皮質]]などが同定されている。


 海馬が知的機能や記憶に関与するとの示唆は、Brown とSchäfer (1888)の実験に見られる<ref>'''Brown, S. and Schäfer, E.A.'''<br>An investigation into the functions of the occipital temporal lobes of the monkey's brain.<br>''Phil. Trans. R. Soc. Lond.'' B 179, 303-327</ref>。海馬を含む側頭葉内側部を両側性に傷害した[[wikipedia:ja:アカゲザル|アカゲザル]]では、凶暴だった性格がおとなしくなった。[[視覚|視]]・[[聴覚|聴]]・[[触覚|触]]・[[味覚|味]]・嗅覚の感覚それ自体には異常を認めないが、音や見える物の意味が理解できない。見慣れた物を与えても、はじめて接する物のごとく口にいれたり、嗅いだりして確かめ、しばらくして同じ物を与えてもやはり同様の行動を何回もくりかえした。Klüver とBucy (1939)はアカゲザルの海馬・[[鈎]]の両側切除術によって、[[思考脱線]]、[[精神盲]]([[視覚失認]])、[[易馴応性]]、[[性欲]]亢進などの症状が起こることを観察し<ref name= Klüver><pubmed> 9447506 </pubmed></ref>、Brown らの所見を追認した。
 海馬が知的機能や記憶に関与するとの示唆は、Brown とSchäfer (1888)の実験に見られる<ref>'''Brown, S. and Schäfer, E.A.'''<br>An investigation into the functions of the occipital temporal lobes of the monkey's brain.<br>''Phil. Trans. R. Soc. Lond.'' B 179, 303-327</ref>。海馬を含む側頭葉内側部を両側性に傷害した[[wikipedia:ja:アカゲザル|アカゲザル]]では、凶暴だった性格がおとなしくなった。[[視覚|視]]・[[聴覚|聴]]・[[触覚|触]]・[[味覚|味]]・嗅覚の感覚それ自体には異常を認めないが、音や見える物の意味が理解できない。見慣れた物を与えても、はじめて接する物のごとく口にいれたり、嗅いだりして確かめ、しばらくして同じ物を与えてもやはり同様の行動を何回もくりかえした。Klüver とBucy (1939)は[[アカゲザル]]の海馬・[[鈎]]の両側切除術によって、[[思考脱線]]、[[精神盲]]([[視覚失認]])、[[易馴応性]]、[[性欲]]亢進などの症状が起こることを観察し<ref name= Klüver><pubmed> 9447506 </pubmed></ref>、Brown らの所見を追認した。


 [[wikipedia:ja:ヒト|ヒト]]では、Bechterew (1899)、Grünthal (1947)<ref>'''Grünthal, E.'''<br>Über das klinische Bild nach umschriebenen beiderseitigem Ausfall der Ammonshornrinde.<br>''Monatsschr. Psychiat. Neurol.'', 113, 1-16, 1947</ref>、GleesとGriffith (1952)ら<ref name= Glees><pubmed>14947832</pubmed></ref>が、近時記憶に著しい障害のあった患者の脳を死後剖検し、両側の海馬や海馬傍回に器質性病変のあることを報告した。そして、ScovilleとMilner (1957)が難治性[[てんかん]]患者の治療目的で、両側[[側頭葉]]内側部([[扁桃体]]、海馬傍回、海馬前方2/3 )の切除術を行ったところ、強度の順行性記憶障害を惹起したことを報告した<ref name= Scoville><pubmed> 13406589 </pubmed></ref>。患者らは知能指数にはまったく問題がみられないが、術後の事象の記憶が全然できない。人の顔や名前は全く記憶することができず、受けた指示の内容だけでなく指示されたことも覚えていない。また術前3年までぐらいの[[逆行性健忘]]も見られた。一方、数年より以前の事象は思い出すことが可能で、以来、海馬が[[近時記憶]]と[[長期記憶]]の形成([[記銘]])の部位として注目されるようになった。
 [[wikipedia:ja:ヒト|ヒト]]では、Bechterew (1899)、[[GR|Gr]]ünthal (1947)<ref>'''Grünthal, E.'''<br>Über das klinische Bild nach umschriebenen beiderseitigem Ausfall der Ammonshornrinde.<br>''Monatsschr. Psychiat. Neurol.'', 113, 1-16, 1947</ref>、GleesとGriffith (1952)ら<ref name= Glees><pubmed>14947832</pubmed></ref>が、近時記憶に著しい障害のあった患者の脳を死後剖検し、両側の海馬や海馬傍回に器質性病変のあることを報告した。そして、ScovilleとMilner (1957)が難治性[[てんかん]]患者の治療目的で、両側[[側頭葉]]内側部([[扁桃体]]、海馬傍回、海馬前方2/3 )の切除術を行ったところ、強度の順行性記憶障害を惹起したことを報告した<ref name= Scoville><pubmed> 13406589 </pubmed></ref>。患者らは知能指数にはまったく問題がみられないが、術後の事象の記憶が全然できない。人の顔や名前は全く記憶することができず、受けた指示の内容だけでなく指示されたことも覚えていない。また術前3年までぐらいの[[逆行性健忘]]も見られた。一方、数年より以前の事象は思い出すことが可能で、以来、海馬が[[近時記憶]]と[[長期記憶]]の形成([[記銘]])の部位として注目されるようになった。


 記憶機能には記銘(つくる)、[[貯蔵]](しまう)、[[想起]](とりだす)の過程があり、それぞれの記憶過程には、これを司る特異的脳部位があると考えられる。大脳皮質連合野で分析された種々の情報は、嗅周皮質と嗅内野で混合され、嗅内野から[[貫通線維]]束として海馬体に入る(図8)。海馬の中に入ってきた信号は、すでに視覚、聴覚といった感覚種(modality)が曖昧な超感覚種の信号という<ref><pubmed>4992433</pubmed></ref>。これらの情報は海馬体の内部回路により信号処理され、[[脳弓]]によって皮質下構造([[視床前核]]、[[視床下部]]、乳頭体、[[中隔側坐核]])へ出力されるとともに、複数の投射経路によって嗅内野へ帰還する。そして、嗅内野から大脳皮質へ信号が運ばれ、記憶として貯蔵されると考えられる。海馬の中では感覚種は識別されなくなっているといわれるが、特定の場所に来たときに特別に反応する細胞([[場所細胞]]: [[Place cells]])が見つかっている。海馬の外では、前海馬台には頭部の方向選択制にかかわる細胞([[head-direction cells]])や空間上の規則正しいスポットに来たときに特別に反応する細胞([[グリッド細胞]]:[[Grid cells]])などが見つかっている。
 記憶機能には記銘(つくる)、[[貯蔵]](しまう)、[[想起]](とりだす)の過程があり、それぞれの記憶過程には、これを司る特異的脳部位があると考えられる。大脳皮質連合野で分析された種々の情報は、嗅周皮質と嗅内野で混合され、嗅内野から[[貫通線維]]束として海馬体に入る(図8)。海馬の中に入ってきた信号は、すでに視覚、聴覚といった感覚種(modality)が曖昧な超感覚種の信号という<ref><pubmed>4992433</pubmed></ref>。これらの情報は海馬体の内部回路により信号処理され、[[脳弓]]によって皮質下構造([[視床前核]]、[[視床下部]]、乳頭体、[[中隔側坐核]])へ出力されるとともに、複数の投射経路によって嗅内野へ帰還する。そして、嗅内野から大脳皮質へ信号が運ばれ、記憶として貯蔵されると考えられる。海馬の中では感覚種は識別されなくなっているといわれるが、特定の場所に来たときに特別に反応する細胞([[場所細胞]]: [[Place cells]])が見つかっている。海馬の外では、前海馬台には頭部の方向選択制にかかわる細胞([[head-direction cells]])や空間上の規則正しいスポットに来たときに特別に反応する細胞([[グリッド細胞]]:[[Grid cells]])などが見つかっている。


 前述の難治性[[てんかん]]の治療で両側海馬体を除去した症例([[患者HM]]など)や一時的心停止後にCA1細胞が特異的に脱落した症例([[患者RB]])では、遠い過去の記憶の想起は可能だが、顕著な順行性健忘([[記銘障害]])が見られた。[[アルツハイマー病]]では早期に記銘障害が出現することが特徴で、まず嗅内野、海馬台、CA1に変性が見られる。他方、乳頭体変性をきたす[[コルサコフ症候群]]や[[間脳]]性の傷害では、[[順行性健忘]]に加えて逆行性健忘(想起障害)も見られる。さらに、大脳皮質の広範囲に変性が見られる[[老人性痴呆]]では、全般的な記憶の破壊が見られる。また、エピソード形成(記憶事象の順序立て)や想起には海馬—脳弓—乳頭体—[[乳頭体視床束]] ([[Vicq d'Azyr束]]) —視床前核—[[帯状回]]—海馬と続くPapez 回路や前頭葉の関与が考えられている(Squier, 1987)。Papez (1937) は、もともとは情動発現を司る部位として視床下部を、情動経験の部位として大脳半球内側皮質(帯状回、海馬)と視床を推定し、この回路は情動に関与すると考えたが、実はこれが記憶に密接に関与する回路であることがわかってきた。
 前述の難治性[[てんかん]]の治療で両側海馬体を除去した症例([[患者HM]]など)や一時的心停止後にCA1細胞が特異的に脱落した症例([[患者RB]])では、遠い過去の記憶の想起は可能だが、顕著な順行性[[健忘]]([[記銘障害]])が見られた。[[アルツハイマー病]]では早期に記銘障害が出現することが特徴で、まず嗅内野、海馬台、CA1に変性が見られる。他方、乳頭体変性をきたす[[コルサコフ症候群]]や[[間脳]]性の傷害では、[[順行性健忘]]に加えて逆行性健忘(想起障害)も見られる。さらに、大脳皮質の広範囲に変性が見られる[[老人性痴呆]]では、全般的な記憶の破壊が見られる。また、エピソード形成(記憶事象の順序立て)や想起には海馬—脳弓—乳頭体—[[乳頭体視床束]] ([[Vicq d'Azyr束]]) —視床前核—[[帯状回]]—海馬と続くPapez 回路や前頭葉の関与が考えられている(Squier, 1987)。Papez (1937) は、もともとは[[情動]]発現を司る部位として視床下部を、情動経験の部位として大脳半球内側皮質(帯状回、海馬)と視床を推定し、この回路は情動に関与すると考えたが、実はこれが記憶に密接に関与する回路であることがわかってきた。


 記憶の形成には神経回路の機能的強化であるシナプスの[[長期増強]]([[long term potentiation]], [[LTP]]) の現象が起こり、後に構造変化が起こるとされている。
 記憶の形成には神経回路の機能的強化であるシナプスの[[長期増強]]([[long term potentiation]], [[LTP]]) の現象が起こり、後に構造変化が起こるとされている。