メインメニューを開く

脳科学辞典 β

差分

ヒストン

307 バイト追加, 2012年11月14日 (水) 22:40
編集の要約なし
 ヌクレオソームを構成するヒストンにはどのコアヒストンにも保存されている領域が存在し、ヒストン型折りたたみドメイン(histone-fold domain)と呼ばれる。この領域はヒストンの中間体の集合に関与し、間に短いループを2つ(L1、L2)もつ3つの[[wikipedia:ja:αヘリックス|αヘリックス]](α1、α2、α3)で構成されている。この領域を介して特定の組み合わせのヒストンが結合する。H3とH4はまずヘテロ二量体を形成し、この二量体同士が結合し、H3、H4各2分子からなる四量体(H3・H4)を形成する。H2A、H2Bは溶液中でヘテロ二量体は形成するが、四量体は形成しない。その後、H3-H4四量体がDNAに結合し、そこに2個のH2A・H2Bが結合することによってヌクレオソームが完成する(図1)。
 ヌクレオソームヒストンの構造は球形のカルボキシル末端部分と、直鎖状のアミノ末端部分(ヒストンテール)からなる<ref name="ref2" /><ref><pubmed>7479959</pubmed></ref><ref><pubmed>19217387</pubmed></ref>(編集コメント:これも図示出来ればと思います)。 ヒストンは多くの[[wikipedia:ja:翻訳後修飾|翻訳後修飾]]可能な残基を持っており、特にヒストンテールの[[セリン]]、リジン、アルギニン残基などは[[リン酸化]]、[[アセチル化]]、[[wikipedia:ja:メチル化|メチル化]]、[[ユビキチン化]]といった化学修飾を受けることが知られている。これらの化学修飾は、遺伝子発現等、数々のクロマチン機能の制御に関わっている(機能の項参照)。複数の修飾の組み合わせがそれぞれ特異的な機能を引き出すという仮説は、ヒストンコード仮説と呼ばれている<ref><pubmed>10638745</pubmed></ref><ref><pubmed> 11498575</pubmed></ref>。
== 機能 ==
=== ヒストンの修飾によるクロマチンの制御 ===
 ヒストンのアミノ末端部分(ヒストンテール)は、さまざまな修飾を受けることによりクロマチンの機能を制御している。その影響は修飾の種類や部位によって決まる(表1、表2、図2)。遺伝子の発現もそのうちのひとつで、このようにゲノムの塩基配列の変化を起こさずに遺伝子の機能を調節する仕組みを ヒストンのアミノ末端部分(ヒストンテール)は、さまざまな修飾を受けることによりクロマチンの機能を制御しており、その影響は修飾の種類や部位によって決まる(表1、図2)。代表的なヒストン修飾として、アセチル化、脱アセチル化、メチル化、脱メチル化、リン酸化、ユビキチン化、SUMO化などが知られている。これらの修飾は、それぞれの修飾を行う酵素(修飾酵素)によって行われている(表2)。遺伝子の発現もヒストンの修飾によるクロマチン制御の影響を受けることが知られているが、このようにゲノムの塩基配列の変化を起こさずに遺伝子の機能を調節する仕組みを[[エピジェネティクス]]という。ヒストン修飾は遺伝子発現制御にとどまらずDNA修復や染色体凝縮([[有糸分裂]])、[[wikipedia:ja:精子|精子]]形成([[wikipedia:ja:減数分裂|減数分裂]])などの多様な生物学的プロセスに関与していることが知られている<ref><pubmed>21927517</pubmed></ref>が、ここでは転写を調節するヒストン修飾の例を以下に示す。
[[Image:Kinichinakashima fig 2.png|thumb|350px|'''図2.代表的なヒストンテール上アミノ酸の修飾'''<br>それぞれのヒストンコアタンパク質におけるヒストンテールの修飾のうち代表的なものを示した。左端がN末端を示す。ヒストンテールは多様な修飾を受け、その影響は修飾の種類や部位によって決まる(表1)。ヒストン修飾は遺伝子の発現制御などに重要な役割を果たしている。]]
170
回編集