「生物学的精神医学」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の9版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">[http://researchmap.jp/read0092646 倉知正佳]</font><br>
''富山大学 医学部 医学科''<br>
DOI:<selfdoi /> 原稿受付日:2012年8月28日 原稿完成日:2012年9月23日<br>
担当編集委員:[http://researchmap.jp/tadafumikato 加藤 忠史](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
{{box|text=
 生物学的精神医学とは、[[精神疾患]]の神経生物学的側面を理解しようとする学問分野であり、それは、精神医学の生物医学的基盤を提供する。研究に際しては、[[wikipedia:ja:神経病理学|神経病理学]]、[[wikipedia:ja:神経生理学|神経生理学]]、[[wikipedia:ja:精神薬理学|精神薬理学]]、[[wikipedia:ja:神経化学|神経化学]]、[[wikipedia:ja:神経内分泌学|神経内分泌学]]、[[wikipedia:ja:脳画像|脳画像]]、[[wikipedia:ja:認知神経心理学|認知神経心理学]]、[[wikipedia:ja:遺伝学|遺伝学]]、[[wikipedia:ja:分子生物学|分子生物学]]など、神経科学のさまざまな方法が用いられる。
 生物学的精神医学とは、[[精神疾患]]の神経生物学的側面を理解しようとする学問分野であり、それは、精神医学の生物医学的基盤を提供する。研究に際しては、[[wikipedia:ja:神経病理学|神経病理学]]、[[wikipedia:ja:神経生理学|神経生理学]]、[[wikipedia:ja:精神薬理学|精神薬理学]]、[[wikipedia:ja:神経化学|神経化学]]、[[wikipedia:ja:神経内分泌学|神経内分泌学]]、[[wikipedia:ja:脳画像|脳画像]]、[[wikipedia:ja:認知神経心理学|認知神経心理学]]、[[wikipedia:ja:遺伝学|遺伝学]]、[[wikipedia:ja:分子生物学|分子生物学]]など、神経科学のさまざまな方法が用いられる。


4行目: 12行目:


 生物学的精神医学研究の近年の動向としては、(1) 臨床研究の[[生命倫理|倫理]]指針が整備され、(2)さまざまな方法を組み合わせた統合的アプローチが行われ、(3) 生物学的所見の臨床応用に向けた研究がはじまっていることが挙げられる。
 生物学的精神医学研究の近年の動向としては、(1) 臨床研究の[[生命倫理|倫理]]指針が整備され、(2)さまざまな方法を組み合わせた統合的アプローチが行われ、(3) 生物学的所見の臨床応用に向けた研究がはじまっていることが挙げられる。
}}


== 生物学的精神医学とは==
== 生物学的精神医学とは==
29行目: 38行目:


#臨床研究の倫理指針が整備され、
#臨床研究の倫理指針が整備され、
#遺伝子解析、認知機能、脳画像、精神生理学、精神薬理学、動物モデル、血液生化学検査などさまざまな方法を組み合わせた統合的アプローチが行われ、
#遺伝子解析、認知機能、脳画像、精神生理学、精神薬理学、[[動物モデル]]、血液生化学検査などさまざまな方法を組み合わせた統合的アプローチが行われ、
#生物学的所見の診断への応用研究がはじまり、病因・病態研究から、新しい治療薬の開発と臨床試験も行われるようになってきている
#生物学的所見の診断への応用研究がはじまり、病因・病態研究から、新しい治療薬の開発と臨床試験も行われるようになってきている


36行目: 45行目:
==解析手法==
==解析手法==


 生物学的精神医学においては、神経科学のさまざまな方法が用いられる<ref name=ref4>'''Charney DS, Nestler EJ'''<br>Neurobiology of Mental Illness, 3rd edn., Part Ⅱ. Methods of clinical neurobiological research (Tamminga CA), pp129-130; Chapter 39. <br>The neurobiology of fear and anxiety: contributions of animal models to current understanding (Sullivan GM, et al),<br> pp603-626, Oxford University Press, Oxford, 2009.</ref>。
 生物学的精神医学においては、神経科学のさまざまな方法が用いられる<ref name=ref4>'''Charney DS, Nestler EJ'''<br>Neurobiology of Mental Illness, 3rd edn., Part Ⅱ. Methods of clinical neurobiological research (Tamminga CA), pp129-130; Chapter 39. <br>The neurobiology of fear and anxiety: contributions of animal models to current understanding (Sullivan GM, et al), pp603-626, <br>Oxford University Press, Oxford, 2009.</ref>。


===神経病理学===
===神経病理学===
52行目: 61行目:
===遺伝学===
===遺伝学===


 [[アルツハイマー病]]の神経病理学的変化が、[[ダウン症候群]](21番染色体のトリソミー)では、よく生じることから、家族性アルツハイマー病で、21番染色体の遺伝子の探索が進められ、1991年に、Alison Goateらにより、[[アミロイド前駆タンパク質]](amyloid precursor protein)遺伝子の点変異が同定された。これは精神疾患における原因遺伝子の最初の発見であった<ref name=ref8>'''Gelder M, Harrison P, Cowen P'''<br>Shorter Oxford Textbook of Psychiatry, , 5th edn., Chapter 5. Aetiology, pp81-111; Chapter 11. Mood disorders, pp217-265, <br>Oxford University Press, Oxford, 2006.</ref>。
 [[アルツハイマー病]]の神経病理学的変化が、[[ダウン症候群]](21番染色体のトリソミー)では、よく生じることから、家族性アルツハイマー病で、21番染色体の遺伝子の探索が進められ、1991年に、Alison Goateらにより、[[アミロイド前駆タンパク質]](amyloid precursor protein)遺伝子の点変異が同定された。これは精神疾患における原因遺伝子の最初の発見であった<ref name=ref8>'''Gelder M, Harrison P, Cowen P'''<br>Shorter Oxford Textbook of Psychiatry, , 5th edn., <br>Chapter 5. Aetiology, pp81-111; <br>Chapter 11. Mood disorders, pp217-265, <br>Oxford University Press, Oxford, 2006.</ref>。


 その後、分子遺伝学の進歩は著しく、精神疾患の[[感受性遺伝子]](susceptibility gene)の研究が活発に行われている。精神疾患に関連すると報告されている遺伝子多型の多くは、アミノ酸配列には影響を及ぼさないものであり、これらは[[wikipedia:ja:遺伝子発現|遺伝子発現]]([[wikipedia:ja:mRNA|mRNA]]への転写)の時期、量や[[wikipedia:ja:スプライシング|スプライシング]]に影響しているのかも知れない<ref name=ref8 />。以前から、遺伝的素因があると不利な環境の影響を受けやすいことが指摘されていたが、遺伝子発現と環境との相互作用は、さまざまな精神障害の成立機構を解明していく上での重要な課題である。
 その後、分子遺伝学の進歩は著しく、精神疾患の[[感受性遺伝子]](susceptibility gene)の研究が活発に行われている。精神疾患に関連すると報告されている遺伝子多型の多くは、アミノ酸配列には影響を及ぼさないものであり、これらは[[wikipedia:ja:遺伝子発現|遺伝子発現]]([[wikipedia:ja:mRNA|mRNA]]への転写)の時期、量や[[wikipedia:ja:スプライシング|スプライシング]]に影響しているのかも知れない<ref name=ref8 />。以前から、遺伝的素因があると不利な環境の影響を受けやすいことが指摘されていたが、遺伝子発現と環境との相互作用は、さまざまな精神障害の成立機構を解明していく上での重要な課題である。
61行目: 70行目:


====ナルコレプシー====
====ナルコレプシー====
 [[ナルコレプシー]]<ref name=ref5 />については、遺伝性[[wikipedia:ja:イヌ|イヌ]]ナルコレプシーの原因が、[[オレキシン]](orexin)[[2受容体]]の変異であることが判明したことなどから、研究が進展し、ナルコレプシー患者の約90%では、脳脊髄液のオレキシンA濃度が測定限界以下に低下すること、患者の死後脳では、視床下部外側野のオレキシン神経細胞数が10%以下に著減していることが見いだされ、ナルコレプシーの病因に[[覚醒]]性神経であるオレキシン神経系の障害が関与することが明らかにされた。
: [[ナルコレプシー]]<ref name=ref5 />については、遺伝性[[wikipedia:ja:イヌ|イヌ]]ナルコレプシーの原因が、[[オレキシン]](orexin)2[[受容体]]の変異であることが判明したことなどから、研究が進展し、ナルコレプシー患者の約90%では、脳脊髄液のオレキシンA濃度が測定限界以下に低下すること、患者の死後脳では、視床下部外側野のオレキシン神経細胞数が10%以下に著減していることが見いだされ、ナルコレプシーの病因に[[覚醒]]性神経であるオレキシン神経系の障害が関与することが明らかにされた。


====母子分離ストレス====
====母子分離ストレス====
 [[wikipedia:ja:げっ歯類|げっ歯類]]を用いて、幼若期の一定時間の[[母子分離ストレス]]等により、成長後も視床下部-下垂体-副腎皮質(HPA)系の機能亢進が持続し、海馬の新生神経細胞数が減少することが示された<ref name=ref9><pubmed>11430844</pubmed></ref> <ref name=ref10><pubmed>18200448</pubmed></ref> <ref name=ref11>'''加藤忠史'''<br>脳と精神疾患、pp82-90; pp166-167<br>朝倉書店、東京、2009</ref>。HPA系の亢進による過剰の[[コルチコステロイド]]は、[[セロトニン受容体]]の発現を減少させ、[[海馬]]の神経細胞の減少を引き起こし得る(glucocorticoid cascade hypothesis)<ref name=ref8 />。幼若期に母親との接触が濃くない[[wikipedia:ja:ラット|ラット]]では、グルココルチコイド受容体遺伝子の[[プロモーター]]領域の[[メチル化]]が亢進し、この[[エピジェネティック]]な機構により、初期のストレスの影響が成長後も持続するとの仮説もある<ref><pubmed>16260130</pubmed></ref>。また、ストレスにより、海馬の[[脳由来神経栄養因子]](brain-derived neurotrophic factor, BDNF)の発現が減少し、抗うつ薬は、BDNFを増加させ、海馬の神経細胞新生を促進することが示されている<ref name=ref13><pubmed>16631126</pubmed></ref>。
: [[wikipedia:ja:げっ歯類|げっ歯類]]を用いて、幼若期の一定時間の[[母子分離ストレス]]等により、成長後も視床下部-下垂体-副腎皮質(HPA)系の機能亢進が持続し、海馬の新生神経細胞数が減少することが示された<ref name=ref9><pubmed>11430844</pubmed></ref> <ref name=ref10><pubmed>18200448</pubmed></ref> <ref name=ref11>'''加藤忠史'''<br>脳と精神疾患、pp82-90; pp166-167<br>朝倉書店、東京、2009</ref>。HPA系の亢進による過剰の[[コルチコステロイド]]は、[[セロトニン受容体]]の発現を減少させ、[[海馬]]の神経細胞の減少を引き起こし得る(glucocorticoid cascade hypothesis)<ref name=ref8 />。幼若期に母親との接触が濃くない[[wikipedia:ja:ラット|ラット]]では、グルココルチコイド受容体遺伝子の[[プロモーター]]領域の[[メチル化]]が亢進し、この[[エピジェネティック]]な機構により、初期のストレスの影響が成長後も持続するとの仮説もある<ref><pubmed>16260130</pubmed></ref>。また、ストレスにより、海馬の[[脳由来神経栄養因子]](brain-derived neurotrophic factor, BDNF)の発現が減少し、抗うつ薬は、BDNFを増加させ、海馬の神経細胞新生を促進することが示されている<ref name=ref13><pubmed>16631126</pubmed></ref>。


====オキシトシン====
====オキシトシン====


 [[オキシトシン]]<ref name=ref6 />は、9つのアミノ酸から構成される[[下垂体]][[後葉]][[ホルモン]]であるが、オキシトシン欠損マウスでは、社会的行動の障害が示され、オキシトシンは、社会的きずなの形成に関与していることが示唆されている。自閉症児の血漿オキシトシンは、対照の約半分と有意に低下していることから、経鼻的オキシトシン療法の臨床試験が行われている。
: [[オキシトシン]]<ref name=ref6 />は、9つのアミノ酸から構成される[[下垂体]][[後葉]][[ホルモン]]であるが、オキシトシン欠損マウスでは、社会的行動の障害が示され、オキシトシンは、社会的きずなの形成に関与していることが示唆されている。自閉症児の血漿オキシトシンは、対照の約半分と有意に低下していることから、経鼻的オキシトシン療法の臨床試験が行われている。


==各論==
==各論==
75行目: 84行目:
===不安障害===
===不安障害===


 基礎研究から、恐怖刺激における扁桃体の役割が明らかにされていたが、不安障害やうつ病患者では、顕在的、あるいは潜在的な恐怖表情刺激に対して、扁桃体の過剰賦活がみられ、この過剰賦活は、抗うつ薬治療により、改善する。多くの不安障害では、島皮質の賦活亢進も生じている<ref name=ref14>19625997<pubmed>16260130</pubmed></ref>。外傷後ストレス障害では、扁桃体の過剰賦活に加えて、内側前頭皮質の低活性が認められ、前頭皮質の扁桃体への抑制に欠陥が生じているようである。この内側前頭皮質の低活性は、治療により改善し、それは、症状改善とも相関する。他方、強迫性障害の神経回路は、不安障害とは異なっているようで、強迫性障害の構造画像のメタ解析では、両側の[[レンズ核]]の体積増大と背内側前頭/前部帯状回の体積減少が認められ、機能画像では、[[眼窩前頭前野]]と尾状核の機能亢進を示す報告が多く、[[眼窩前頭-線条体回路モデル]]が提唱されている。
 基礎研究から、恐怖刺激における扁桃体の役割が明らかにされていたが、不安障害やうつ病患者では、顕在的、あるいは潜在的な恐怖表情刺激に対して、扁桃体の過剰賦活がみられ、この過剰賦活は、抗うつ薬治療により、改善する。多くの不安障害では、島皮質の賦活亢進も生じている<ref name=ref14><pubmed>19625997</pubmed></ref>。外傷後ストレス障害では、扁桃体の過剰賦活に加えて、内側前頭皮質の低活性が認められ、前頭皮質の扁桃体への抑制に欠陥が生じているようである。この内側前頭皮質の低活性は、治療により改善し、それは、症状改善とも相関する。他方、強迫性障害の神経回路は、不安障害とは異なっているようで、強迫性障害の構造画像の[[wikipedia:ja:メタ解析|メタ解析]]<ref name=ref15><pubmed>19880927</pubmed></ref>では、両側の[[レンズ核]]の体積増大と背内側前頭/前部帯状回の体積減少が認められ、機能画像では、[[眼窩前頭前野]]と尾状核の機能亢進を示す報告が多く、[[眼窩前頭-線条体回路モデル]]が提唱されている<ref name=ref16><pubmed>18061263</pubmed></ref>。


===気分障害===
===気分障害===


 [[気分障害関連]]では、大うつ病のかなりの患者で、HPA系の機能亢進が生じていて、それは、うつ病の重症度と相関すると報告されている。小児期に虐待を受けた成人は、HPA系の機能亢進が持続し、ストレスに対して、感受性が高いことが示唆されている。動物実験より、過剰のコルチコステロイドは、海馬の神経細胞に傷害的に作用することが示されているが、大うつ病患者の構造的MRI研究の[[wikipedia:ja:メタ解析|メタ解析]]では、海馬体積の減少が認められており、これらの関係が議論されている。また、未服薬の大うつ病患者では、血清BDNFが低下していて、抗うつ薬治療により、この低下は改善した。これらのことから、[[うつ病の神経可塑性仮説]](neuroplasticity hypothesis)も提唱されている。近年の疫学的研究からは、[[神経症傾向]](neuroticism;傷つきやすく、神経質で、心配性)が高い人は、ストレスフルな生活上の出来事の影響を受けて、大うつ病になりやすいことが示されているが、この性格傾向と[[遺伝子多型]]([[5-HTトランスポーター]]遺伝子のSアリル)との関連も示されている。[[双極性障害]]の機能画像のメタ解析では、辺縁系の高活性と前頭葉の低活性が示されている。
 [[気分障害関連]]では、大うつ病のかなりの患者で、HPA系の機能亢進が生じていて、それは、うつ病の重症度と相関すると報告されている<ref name=ref17>'''Gelder MG, et al (edn.)'''<br>New Oxford Textbook of Psychiatry, Vol. 1, 2nd edn., <br>Chapter 2.3.3. Neuroendocrinology (Nemeroff CB, Neigh GN), <br>Oxford University Press, Oxford, 2009.</ref>。小児期に虐待を受けた成人は、HPA系の機能亢進が持続し、ストレスに対して、感受性が高いことが示唆されている<ref name=ref8 /> <ref name=ref18><pubmed>22112927</pubmed></ref>。動物実験より、過剰のコルチコステロイドは、海馬の神経細胞に傷害的に作用することが示されているが、大うつ病患者の構造的MRI研究のメタ解析<ref name=ref19><pubmed>21745692</pubmed></ref>では、海馬体積の減少が認められており、これらの関係が議論されている。また、未服薬の大うつ病患者では、血清BDNFが低下していて、抗うつ薬治療により、この低下は改善した<ref name=ref13 /> <ref name=ref20><pubmed>12842310</pubmed></ref>。これらのことから、[[うつ病の神経可塑性仮説]](neuroplasticity hypothesis)も提唱されている。近年の疫学的研究からは、[[神経症傾向]](neuroticism;傷つきやすく、神経質で、心配性)が高い人は、ストレスフルな生活上の出来事の影響を受けて、大うつ病になりやすいことが示されているが<ref name=ref21><pubmed>17015813</pubmed></ref>、この性格傾向と[[遺伝子多型]]([[5-HTトランスポーター]]遺伝子のSアリル)との関連も示されている<ref name=ref22><pubmed>12869766</pubmed></ref> <ref name=ref23><pubmed>10893498</pubmed></ref>。[[双極性障害]]の機能画像のメタ解析では、辺縁系の高活性と前頭葉の低活性が示されている<ref name=ref24><pubmed>21676596 </pubmed></ref>。


===統合失調症===
===統合失調症===


 統合失調症の構造画像では、患者群で、[[側脳室]]が拡大し、前頭前野-側頭-辺縁系に軽度の体積減少があることは、ほぼ一致した所見である。とくに前頭前野皮質と上側頭回の変化は、前駆期から発病後の数年間にかけて進行することが、構造的MRIで示され、後期神経発達障害(脳の成熟の障害)仮説が有力となっている。ただし、個々の変化は、健常者群との重なりが大きい。[[陰性症状]]、[[幻聴]]や[[思考障害]]と脳の形態や機能との関連も報告されている。[[言語性記憶]]、[[実行機能]]などの認知機能障害が、社会的転帰と関連することが示されている。統合失調症の睡眠脳波では、[[視床-皮質ネットワーク]]の同期化を反映している[[睡眠紡錘波]]と[[徐波睡眠]]の減少が指摘されている。
 統合失調症の構造画像では、患者群で、[[側脳室]]が拡大し、前頭前野-側頭-辺縁系に軽度の体積減少があることは、ほぼ一致した所見である。とくに前頭前野皮質と上側頭回の変化は、前駆期から発病後の数年間にかけて進行することが、構造的MRIで示され、後期神経発達障害(脳の成熟の障害)仮説が有力となっている<ref name=ref25>'''鈴木道雄'''<br>統合失調症における脳構造.画像診断の臨床的意義.<br>精神経誌 111: 1159-1164, 2009.</ref> <ref name=ref26>'''Sadock BJ, Sadock VA, Ruiz P'''<br>Kaplan & Sadock’s Comprehensive Textbook of Psychiatry, Vol. 1, 9th edn., Chapter 1.10. <br>Cellular and synaptic electrophysiology (Zorumski CF, et al), pp129-147; Chapter 12.7. <br>Structural brain imaging in schizophrenia (Shenton ME, Kubicki M), pp1494-1507; Chapter 12.10. <br>Neurocognition in schizophrenia (Keefe RSE, Eesley CE), pp1531-1541, <br>Lippincott Williams & Wilkins, Philadelphia, 2009.</ref>。ただし、個々の変化は、健常者群との重なりが大きい。[[陰性症状]]、[[幻聴]]や[[思考障害]]と脳の形態や機能との関連も報告されている。[[言語性記憶]]、[[実行機能]]などの認知機能障害が、社会的転帰と関連することが示されている<ref name=ref26 />。統合失調症の睡眠脳波では、[[視床-皮質ネットワーク]]の同期化を反映している[[睡眠紡錘波]]と[[徐波睡眠]]の減少が指摘されている<ref name=ref26 />。


 [[カテコール-O-メチル基転移酵素]](Catechol-O-methyltransferase, COMT)は、細胞質内にあり、[[ドーパミン]]などの[[カテコールアミン]]を分解する酵素である。これには、高活性と低活性の多型があり、158番目のアミノ酸が[[wikipedia:ja:バリン|バリン]](valine)のものは、高活性で、[[wikipedia:ja:メチオニン|メチオニン]](methionine)のものは、低活性である。Val-COMTでは、ドーパミンの分解が促進され、[[作業記憶]]課題の成績がより低いこと、そして、このvalアリルと統合失調症の関連が研究されている。[[wikipedia:ja:一卵性双生児|一卵性双生児]]の一致率は、約50%で、不一致組では、発症例の方に、脳の形態学的変化が認められる。
 [[カテコール-O-メチル基転移酵素]](Catechol-O-methyltransferase, COMT)は、細胞質内にあり、[[ドーパミン]]などの[[カテコールアミン]]を分解する酵素である。これには、高活性と低活性の多型があり、158番目のアミノ酸が[[wikipedia:ja:バリン|バリン]](valine)のものは、高活性で、[[wikipedia:ja:メチオニン|メチオニン]](methionine)のものは、低活性である。Val-COMTでは、ドーパミンの分解が促進され、[[作業記憶]]課題の成績がより低いこと、そして、このvalアリルと統合失調症の関連が研究されている<ref name=ref8 />。[[wikipedia:ja:一卵性双生児|一卵性双生児]]の一致率は、約50%で、不一致組では、発症例の方に、脳の形態学的変化が認められる<ref name=ref27><pubmed>20538831</pubmed></ref>。


 統合失調症の感受性遺伝子としては、メタ解析からは、ニューレグリン(neuregulin)、ディスビンディン(dysbindin)との関連が報告された。これらの遺伝子多型が、脳構造や精神生理学的指標と関連すると報告されている(例. ニューレグリンと側脳室の拡大、[[滑動性眼球運動]]との関連など)。生化学的には、[[GABA]]ニューロン上の[[NMDA型グルタミン酸受容体]]の低活性仮説が有力である。
 統合失調症の感受性遺伝子としては、メタ解析からは、[[ニューレグリン]](neuregulin)、[[ディスビンディン]](dysbindin)との関連が報告された。これらの遺伝子多型が、脳構造や精神生理学的指標と関連すると報告されている(例. ニューレグリンと側脳室の拡大、[[滑動性眼球運動]]との関連など<ref name=ref28><pubmed>22019858</pubmed></ref> <ref name=ref29><pubmed>19058791</pubmed></ref>)。生化学的には、[[GABA]]ニューロン上の[[NMDA型グルタミン酸受容体]]の低活性仮説<ref name=ref30><pubmed>16773445</pubmed></ref>が有力である。


==臨床応用==
==臨床応用==


 生物学的精神医学の研究の臨床応用としては、[[近赤外線スペクトロスコピー]](near-infrared spectroscopy, NIRS)が検討されている。NIRSとは、近赤外線が生体を通過する際に[[wikipedia:ja:ヘモグロビン|ヘモグロビン]]より吸収されることを利用して、生体の血液量を非侵襲的に測定する方法である。この検査を用いた言語性課題における血流変化パターンが、大うつ病、双極性障害、あるいは統合失調症において、補助診断の参考になる可能性が示唆されている。
 生物学的精神医学の研究の臨床応用としては、[[近赤外線スペクトロスコピー]](near-infrared spectroscopy, NIRS)が検討されている<ref name=ref6 />。NIRSとは、近赤外線が生体を通過する際に[[wikipedia:ja:ヘモグロビン|ヘモグロビン]]より吸収されることを利用して、生体の血液量を非侵襲的に測定する方法である。この検査を用いた言語性課題における血流変化パターンが、大うつ病、双極性障害、あるいは統合失調症において、補助診断の参考になる可能性が示唆されている。


==学会の動向==
==学会の動向==
165行目: 174行目:


<references />
<references />
4. '''Charney DS, Nestler EJ'''<br>Neurobiology of Mental Illness, 3rd edn.<br>Oxford University Press, Oxford, 2009
5. '''Gazzaniga MS, Ivry RB, Mangun GR'''<br>Cognitive Neuroscinece. The Biology of the Mind, 3rd ed.<br>W・W・Norton & Company, New York, 2009
6. '''Gelder M, Harrison P, Cowen P'''<br>Shorter Oxford Textbook of Psychiatry, 5th edn.<br>Oxford University Press, Oxford, 2006(とくに、第5章 Aetiology)
7. '''Griesinger W'''<br>小俣和一郎、市野川容孝訳<br>精神病の病理と治療<br>東京大学出版会、東京、2008 
8. '''加藤忠史'''<br>脳と精神疾患<br>朝倉書店、東京、2009
9. '''神庭重信、加藤忠史(責任編集)'''<br>脳科学エッセンシャルー精神疾患の生物学的理解のために<br>中山書店、東京、2010 
10. '''Sadock BJ, Sadock VA, Ruiz P'''<br>Kaplan & Sadock’s Comprehensive Textbook of Psychiatry, Vol. 1, 9th edn.<br>Lippincott Williams & Wilkins, Philadelphia, 2009(とくに、1. Neural Sciences) 
(執筆者:倉知正佳 担当編集委員:加藤忠史)

案内メニュー