「神経前駆細胞」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の9版が非表示)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/read0193133 水谷健一]</font><br>
<font size="+1">[http://researchmap.jp/read0193133 水谷健一]</font><br>
''神戸学院大学大学院 薬学研究科 再生医学研究プロジェクト 幹細胞生物学研究室''<br>
''神戸学院大学大学院 薬学研究科 幹細胞生物学研究室''<br>
DOI:<selfdoi /> 原稿受付日:2017年4月6日 原稿完成日:201X年X月X日<br>
DOI:<selfdoi /> 原稿受付日:2017年4月6日 原稿完成日:2017年4月17日<br>
担当編集委員:[http://researchmap.jp/fujiomurakami 村上 富士夫](大阪大学 大学院生命機能研究科)<br>
担当編集委員:[http://researchmap.jp/fujiomurakami 村上 富士夫](大阪大学 大学院生命機能研究科)<br>
</div>
</div>
11行目: 11行目:


== 神経前駆細胞とは ==
== 神経前駆細胞とは ==
[[ファイル: Fig.2c.pdf|500px|thumb|right|'''図. 形態が異なる複数の前駆細胞が、大脳皮質のグルタミン作動性神経細胞を生み出す'''<br><u>発生期の大脳皮質には、脳室面で分裂する未分化型前駆細胞、および非脳室面で分裂する中間型前駆細胞とoRG前駆細胞が存在することが知られている。</u>]]
[[ファイル: Fig.2c.pdf|500px|thumb|right|'''図. 形態が異なる複数の前駆細胞が、大脳皮質のグルタミン作動性神経細胞を生み出す'''<br>発生期の大脳皮質には、脳室面で分裂する未分化型前駆細胞、および非脳室面で分裂する中間型前駆細胞とoRG前駆細胞が存在することが知られている。]]
 複雑な[[大脳皮質]]は[[哺乳類]]の[[脳]]の最大の特徴とされるが、これは複数の神経前駆細胞が多様な神経細胞を産生した結果である。すなわち、発生期における大脳皮質(終脳背側)の[[神経上皮]]に生じた[[神経幹細胞]]が分裂して数を増やし、やがて[[未分化型前駆細胞]]([[放射状グリア細胞]]あるいはapical progenitor<u></u>)、[[中間型前駆細胞]](basal progenitorあるいはintermediate progenitor)<u></u>、および[[oRG前駆細胞]](OSVZ (outer subventricular zone) radial glia-like cell)などの各々の前駆細胞が出現するが、これらの細胞は異なる分裂・分化能力を有し、固有の役割を担う結果として、組織における複雑な細胞構築が可能となる <ref name=ref1><pubmed> 21036598 </pubmed></ref>。これらの前駆細胞は、いずれもグルタミン作動性の神経細胞の発生に寄与していると考えられているが、明確な形態的・機能的な違いが観察される('''図''')。まず、未分化型前駆細胞は生み出した細胞をロコモーションと呼ばれる異動様式で放射状突起を伝って皮質板に移動する一方で、中間型前駆細胞は脳室下帯近傍で多極性細胞(複数の突起を有する細胞)に形態を大きく変化することが知られている。また、oRG前駆細胞は基底膜方向にのみ一本の細胞突起を持つことを特徴とし、主に高等哺乳類のOSVZ(外側脳室下帯)に存在し、非対称分裂により神経細胞を生み出す。
 複雑な[[大脳皮質]]は[[哺乳類]]の[[脳]]の最大の特徴とされるが、これは複数の神経前駆細胞が多様な神経細胞を産生した結果である。すなわち、発生期における大脳皮質(終脳背側)の[[神経上皮]]に生じた[[神経幹細胞]]が分裂して数を増やし、やがて[[未分化型前駆細胞]]([[放射状グリア細胞]]あるいはapical progenitor<u></u>)、[[中間型前駆細胞]](basal progenitorあるいはintermediate progenitor)<u></u>、および[[oRG前駆細胞]](OSVZ (outer subventricular zone) radial glia-like cell)などの各々の前駆細胞が出現するが、これらの細胞は異なる分裂・分化能力を有し、固有の役割を担う結果として、組織における複雑な細胞構築が可能となる <ref name=ref1><pubmed> 21036598 </pubmed></ref>


<u></u>
 これらの前駆細胞は、いずれも[[グルタミン酸]]作動性の神経細胞の発生に寄与していると考えられているが、明確な形態的・機能的な違いが観察される('''図''')。まず、未分化型前駆細胞は生み出した細胞をロコモーションと呼ばれる移動様式で放射状突起を伝って皮質板に移動する一方で、中間型前駆細胞は脳室下帯近傍で多極性細胞(複数の突起を有する細胞)に形態を大きく変化することが知られている。また、oRG前駆細胞は基底膜方向にのみ一本の細胞突起を持つことを特徴とし、主に高等哺乳類のOSVZ([[外側脳室下帯]])に存在し、非対称分裂により神経細胞を生み出す。


 こうした前駆細胞における分裂・分化の極めて小さなバランスの変化は、最終的な脳のサイズに対して決定的な影響を及ぼすことが指摘されており <ref name=ref2><pubmed> 7482803 </pubmed></ref>、例えば、[[β-カテニン]]の[[トランスジェニックマウス]]の大脳皮質では、未分化型前駆細胞の増殖性が2倍程度亢進することによって、極端な皮質表面積の拡大が確認されている<ref name=ref3><pubmed> 12130776 </pubmed></ref>。
 こうした前駆細胞における分裂・分化の極めて小さなバランスの変化は、最終的な脳のサイズに対して決定的な影響を及ぼすことが指摘されており <ref name=ref2><pubmed> 7482803 </pubmed></ref>、例えば、[[β-カテニン]]の[[トランスジェニックマウス]]の大脳皮質では、未分化型前駆細胞の増殖性が2倍程度亢進することによって、極端な皮質表面積の拡大が確認されている<ref name=ref3><pubmed> 12130776 </pubmed></ref>。
20行目: 20行目:
== 未分化型前駆細胞と中間型前駆細胞 ==
== 未分化型前駆細胞と中間型前駆細胞 ==


 哺乳類の[[胎生期]]大脳皮質の神経発生過程においては、[[未分化型前駆細胞]]が[[脳室帯]]のapical面(頂端面)において自己複製を伴う非対称分裂を行い<ref name=ref4><pubmed> 11567613 </pubmed></ref><ref name=ref5><pubmed> 15175243 </pubmed></ref><ref name=ref6><pubmed> 18084280 </pubmed></ref>、将来の神経細胞もしくは[[中間型前駆細胞]]を生じる('''図''')。つまり、未分化型前駆細胞こそが神経幹細胞と同義的に扱える細胞であると言える。
 哺乳類の[[胎生期]]大脳皮質の神経発生過程においては、未分化型前駆細胞が[[脳室帯]]のapical面(頂端面)において自己複製を伴う非対称分裂を行い<ref name=ref4><pubmed> 11567613 </pubmed></ref><ref name=ref5><pubmed> 15175243 </pubmed></ref><ref name=ref6><pubmed> 18084280 </pubmed></ref>、将来の神経細胞もしくは[[中間型前駆細胞]]を生じる('''図''')。つまり、未分化型前駆細胞こそが神経幹細胞と同義的に扱える細胞であると言える。


 一方、中間型前駆細胞は限られた分化ポテンシャルを持ち、主に[[脳室帯]]のbasal側(基底側)である[[脳室下帯]]で1〜3回程度の対称分裂によって神経細胞だけを生じる“[[neurogenic transient amplifying cells]]”(一過性前駆細胞)の一種と考えられている<ref name=ref7><pubmed> 14703572 </pubmed></ref>。
 一方、中間型前駆細胞は限られた分化ポテンシャルを持ち、主に脳室帯のbasal側(基底側)である[[脳室下帯]]で1〜3回程度の対称分裂によって神経細胞だけを生じる[[一過性前駆細胞]](“[[neurogenic transient amplifying cells]]”)の一種と考えられている<ref name=ref7><pubmed> 14703572 </pubmed></ref>。


 この中間型前駆細胞は、大脳皮質の層形成、[[領野]]形成の構築に重要な役割を担うとされている。たとえば、“upper layer hypothesis”<ref name=ref8><pubmed> 7076556</pubmed></ref>では、中間型前駆細胞が大脳皮質発生後期に上層の神経細胞の発生の運命決定に寄与する可能性が報告されている<ref name=ref9><pubmed> 11493521 </pubmed></ref><ref name=ref10><pubmed> 15238450 </pubmed></ref>。
 この中間型前駆細胞は、大脳皮質の層形成、[[領野]]形成の構築に重要な役割を担うとされている。たとえば、“upper layer hypothesis”<ref name=ref8><pubmed> 7076556</pubmed></ref>では、中間型前駆細胞が大脳皮質発生後期に上層の神経細胞の発生の運命決定に寄与する可能性が報告されている<ref name=ref9><pubmed> 11493521 </pubmed></ref><ref name=ref10><pubmed> 15238450 </pubmed></ref>。
37行目: 37行目:
 未分化型前駆細胞の維持・増殖には[[Notch]]シグナルが重要な役割を果たすことが知られている<ref name=ref15><pubmed> 11937492</pubmed></ref>。未分化型前駆細胞において、このNotchシグナルを[[Hes1]]の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現を抑制すること<ref name=ref16><pubmed> 18400163</pubmed></ref>、未分化型前駆細胞が強いNotchシグナルを利用するのに対して、中間型前駆細胞は減弱したNotchシグナルを利用すること<ref name=ref17><pubmed> 17721509</pubmed></ref>から、Notchシグナルの変化が未分化型前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。<br />
 未分化型前駆細胞の維持・増殖には[[Notch]]シグナルが重要な役割を果たすことが知られている<ref name=ref15><pubmed> 11937492</pubmed></ref>。未分化型前駆細胞において、このNotchシグナルを[[Hes1]]の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現を抑制すること<ref name=ref16><pubmed> 18400163</pubmed></ref>、未分化型前駆細胞が強いNotchシグナルを利用するのに対して、中間型前駆細胞は減弱したNotchシグナルを利用すること<ref name=ref17><pubmed> 17721509</pubmed></ref>から、Notchシグナルの変化が未分化型前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。<br />


 また、未分化型前駆細胞が2つの娘細胞に分裂する際に、片方の娘細胞だけに[[細胞周期]]調節因子である[[サイクリンD2]]が受け継がれ、その細胞運命を未分化な状態に維持することが明らかになっている<ref name=ref18><pubmed> 22395070 </pubmed></ref>ことから、様々な分子機構によって未分化型と中間型の前駆細胞の運命が制御されていると考えられる。
== 多極性細胞 ==
 最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(脳室帯を離れて皮質板へと移動を開始した直後の細胞)は、分化過程において脳室下帯や中間帯で多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されており<ref name=ref18><pubmed> 14602813</pubmed></ref>、中間型前駆細胞の中には多極性形態を示す細胞が観察される。


== 多極性細胞 ==
 この多極性細胞は、多数の突起を様々な方向に伸ばし、その突起を活発に伸縮させながら移動と滞留を繰り返し、全体としてはゆっくりと[[皮質板]]へと向かうが、このときの細胞移動は放射状突起を使わないとされている。
 最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(脳室帯を離れて皮質板へと移動を開始した直後の細胞)は、分化過程において脳室下帯や中間帯で多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されており<ref name=ref6><pubmed> 18084280</pubmed></ref><ref name=ref19><pubmed> 14602813</pubmed></ref>、中間型前駆細胞は多極性細胞の一部の集団と考えられている。この多極性細胞は、多数の突起を様々な方向に伸ばし、その突起を活発に伸縮させながら移動と滞留を繰り返し、全体としてはゆっくりと皮質板へと向かうが、このときの細胞移動は放射状突起を使わないとされている<ref name=ref6><pubmed> 18084280</pubmed></ref><ref name=ref19><pubmed> 27993981</pubmed></ref>。最近の研究では、未分化型前駆細胞が生み出した未成熟な細胞は、Tbr2陽性の中間型前駆細胞を経てNeuroD1を発現する多極性形態へと変化する[[細胞系譜]]と、Tbr2陽性細胞にならずに直接、NeuroD1陽性の多極性細胞へと変化する細胞系譜が観察されている<ref name=ref20><pubmed> 19150920</pubmed></ref>。つまり、多極性細胞へ変化するタイミングの異なる2つの細胞系譜が存在することを意味しており、この違いが皮質板へと進入するタイミングの多様性を生むことで、異なる層を構成する神経細胞へと分化する可能性が示唆される<ref name=ref20><pubmed> 27993981</pubmed></ref>。
 
 最近の研究では、未分化型前駆細胞が生み出した未成熟な細胞は、Tbr2陽性の中間型前駆細胞を経て[[NeuroD1]]を発現する多極性形態へと変化する[[細胞系譜]]と、Tbr2陽性細胞にならずに直接、NeuroD1陽性の多極性細胞へと変化する細胞系譜が観察されている<ref name=ref19><pubmed> 19150920</pubmed></ref>
 
 つまり、多極性細胞へ変化するタイミングの異なる2つの細胞系譜が存在することを意味しており、この違いが皮質板へと進入するタイミングの多様性を生むことで、異なる層を構成する神経細胞へと分化する可能性が示唆される。
 
 さらには、未分化型前駆細胞が生み出した細胞が多極性細胞へと変化する際には、[[ミトコンドリア]]局在型の[[活性酸素]]種の量が大きく減少することが見出されており、実際、多極性細胞のマーカーであるNeuroD1の転写活性は活性酸素種の量に依存して変化することが確認されていることから<ref name=ref20><pubmed> 27993981</pubmed></ref>、細胞内の代謝状態の変化が前駆細胞の推移に関与する可能性がある。さらには、未成熟な細胞と考えられている多極性細胞は、未だ細胞運命が決定されていない細胞が含まれている可能性が指摘されている<ref name=ref21><pubmed> 22726835</pubmed></ref>。


 さらには、未分化型前駆細胞が生み出した細胞が多極性細胞へと変化する際には、[[ミトコンドリア]]局在型の[[活性酸素]]種の量が大きく減少することが見出されており<ref name=ref21><pubmed> 27993981</pubmed></ref>、実際、多極性細胞のマーカーであるNeuroD1の転写活性は活性酸素種の量に依存して変化することが確認されていることから<ref name=ref21><pubmed> 27993981</pubmed></ref>、細胞内の代謝状態の変化が前駆細胞の推移に関与する可能性がある。さらには、未成熟な細胞と考えられている多極性細胞は、未だ細胞運命が決定されていない細胞が含まれている可能性が指摘されている<ref name=ref22><pubmed> 22726835</pubmed></ref>。実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、神経分化に決定的な異常を生じ、大脳皮質における層形成の異常を示すことが報告されている<ref name=ref21><pubmed> 27993981</pubmed></ref><ref name=ref22><pubmed> 22726835</pubmed></ref><ref name=ref23><pubmed> 23395638</pubmed></ref>]
 実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、神経分化に決定的な異常を生じ、大脳皮質における層形成の異常を示すことが報告されている<ref name=ref22><pubmed> 23395638</pubmed></ref>]。また。最近の研究では、移動する多極性細胞はサブプレート層で一旦停止し、この際にサブプレートニューロンから伝達されるシグナルによって細胞の性質が変化することが、双極性細胞への変化に決定的な役割を果たすことが報告されている<ref name=ref23><pubmed> 29674592</pubmed></ref>。


== oRG前駆細胞 ==
== oRG前駆細胞 ==
 さらに最近の研究から、[[ヒト]]などの高等哺乳類の胎生期大脳皮質の外側[[脳室下帯]]OSVZには、神経細胞を生み出す「新たな前駆細胞」が存在することが明らかになっている<ref name=ref1><pubmed> 21036598</pubmed></ref><ref name=ref24><pubmed> 20154730</pubmed></ref><ref name=ref25><pubmed> 20436478</pubmed></ref>。この前駆細胞は[[oRG前駆細胞]]とよばれ、非脳室面で非対称分裂を行い、霊長類ばかりでなく齧歯類においても少なからず存在していることが確認されている<ref name=ref26><pubmed> 21389223 </pubmed></ref>。
 さらに最近の研究から、[[ヒト]]などの高等哺乳類の胎生期大脳皮質の外側脳室下帯には、神経細胞を生み出す「新たな前駆細胞」が存在することが明らかになっている<ref name=ref24><pubmed> 20154730</pubmed></ref><ref name=ref25><pubmed> 20436478</pubmed></ref>。この前駆細胞はoRG前駆細胞とよばれ、非脳室面で非対称分裂を行い、[[霊長類]]ばかりでなく[[齧歯類]]においても少なからず存在していることが確認されている<ref name=ref26><pubmed> 21389223 </pubmed></ref>。


 今後、これらの個々の前駆細胞が果たす役割が明らかになることで、大脳皮質の発生を制御する分子機構が明確化されることが期待される。
 今後、これらの個々の前駆細胞が果たす役割が明らかになることで、大脳皮質の発生を制御する分子機構が明確化されることが期待される。


== 関連項目 ==
== 関連項目 ==
* [[神経幹細胞]]
* [[未分化型前駆細胞]]
* [[未分化型前駆細胞]]
* [[中間型前駆細胞]]
* [[oRG前駆細胞]]
* [[oRG前駆細胞]]
* [[放射状グリア細胞]]
* [[放射状突起]]
* [[apical progenitor(脳室面分裂細胞)]]
* [[脳室面分裂細胞]]
* [[basal progenitor(非脳室面分裂細胞)]]
* [[非脳室面分裂細胞]]
* [[intermediate progenitor(中間型前駆細胞)]]
* [[Notch]]
* [[Tbr2]]
* [[NeuroD1]]
* [[多極性細胞]]
* [[多極性細胞]]
* [[外側脳室下帯]]
* [[大脳皮質の発生]]
* [[大脳皮質の発生]]


== 参考文献 ==
== 参考文献 ==
<references/>
<references/>
80

回編集