「空間記憶」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
39行目: 39行目:
 上述したNMDA受容体の空間記憶における役割に関する研究では、海馬全体のNMDA受容体の機能を検討している。しかし、海馬の下位領域のNMDA受容体が異なる機能を持つという研究(Nakazawa, Quirk, Chitwood, Watanabe, Yeckel, Sun, Kato, Carr, Johnston, Wilson & Tonegawa, 2002; Lee, Yoganarasimha, Rao, & Knierim, 2004)が報告され、海馬内の機能分化が検討され始めた。海馬内では、嗅内皮質から貫通線維を介して歯状回に至るシナプス、歯状回から苔状先生を介してCA3野に至るシナプス、CA3からシャッファー側枝を介してCA1野に至るシナプス、さらにそこから嗅内皮質に戻るシナプスが閉回路を形成している。これに加えて、CA3野には、側枝を出して再びCA3野に戻る反回性経路が存在する。苔状線維からCA3に至る経路のシナプスで生じる長期増強はNMDA受容体を必要としないが、反回性経路からCA3に戻る経路のシナプスでの長期増強はNMDA受容体を必要とすることが分かっている(Harris & Cotman, 1986)。Nakazawa et al. (2002)は、CA3限定的にNMDA受容体が発現しないノックアウトマウスに水迷路訓練し、訓練後のプローブテストにおいて、迷路を取り囲む環境刺激の数を変化させた。その結果、CA3ノックアウトマウスでは刺激の数が少なるにつれて、記憶したプラットホーム位置の想起が難しくなった。この結果についてNakazawaらは、CA3野のNMDA受容体は一部の手掛りから全体を想起する「パターンコンプリーション能力」に関与すると結論付けた。
 上述したNMDA受容体の空間記憶における役割に関する研究では、海馬全体のNMDA受容体の機能を検討している。しかし、海馬の下位領域のNMDA受容体が異なる機能を持つという研究(Nakazawa, Quirk, Chitwood, Watanabe, Yeckel, Sun, Kato, Carr, Johnston, Wilson & Tonegawa, 2002; Lee, Yoganarasimha, Rao, & Knierim, 2004)が報告され、海馬内の機能分化が検討され始めた。海馬内では、嗅内皮質から貫通線維を介して歯状回に至るシナプス、歯状回から苔状先生を介してCA3野に至るシナプス、CA3からシャッファー側枝を介してCA1野に至るシナプス、さらにそこから嗅内皮質に戻るシナプスが閉回路を形成している。これに加えて、CA3野には、側枝を出して再びCA3野に戻る反回性経路が存在する。苔状線維からCA3に至る経路のシナプスで生じる長期増強はNMDA受容体を必要としないが、反回性経路からCA3に戻る経路のシナプスでの長期増強はNMDA受容体を必要とすることが分かっている(Harris & Cotman, 1986)。Nakazawa et al. (2002)は、CA3限定的にNMDA受容体が発現しないノックアウトマウスに水迷路訓練し、訓練後のプローブテストにおいて、迷路を取り囲む環境刺激の数を変化させた。その結果、CA3ノックアウトマウスでは刺激の数が少なるにつれて、記憶したプラットホーム位置の想起が難しくなった。この結果についてNakazawaらは、CA3野のNMDA受容体は一部の手掛りから全体を想起する「パターンコンプリーション能力」に関与すると結論付けた。


利根川らの研究 
神経毒の微量投与による局所破壊法を用いた研究でも、海馬を構成する3領域(CA1,CA3,歯状回)の機能が異なることが水迷路課題を行動指標として示された。訓練前に各領域を損傷されたラットの空間記憶障害の重篤さは歯状回を破壊したラットで最もひどく、CA1損傷ラットでは全海馬損傷ラットと同程度であり、CA3損傷ラットでは障害は示されなかった(Okada & Okaichi, 2009)。したがって、空間記憶の形成に歯状回とCA1領域は役割を担う一方で、CA3領域は空間記憶の形成に関与しないといえる。ただし、歯状回損傷の効果は障害の程度が著しく、空間記憶以外の行動障害をもたらしている可能性も残る。
CA1ノックアウトとCA3ノックアウトの違い
 
岡田らの研究
岡田らの研究
CA1,CA3の単独破壊
CA1,CA3の単独破壊
214

回編集