「細胞系譜」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
8行目: 8行目:
英語名:cell lineage 独:Zelllinie 仏:lignée cellulaire
英語名:cell lineage 独:Zelllinie 仏:lignée cellulaire


[[image:細胞系譜1.png|thumb|350px|'''図1.線虫の細胞系譜'''<br>[http://commons.wikimedia.org/wiki/File:Complete_cell_lineage_of_C_elegans.png Wikipedia]より]]
[[image:細胞系譜1.png|thumb|350px|'''図1.線虫の細胞系譜''']]
[[image:細胞系譜2.png|thumb|350px|'''図2.脊椎動物の血球系における細胞系譜特異的な前駆細胞からの分化'''<br>[http://commons.wikimedia.org/wiki/File:Illu_blood_cell_lineage.jpg Wikipedia]より、日本語に翻訳]]
[[image:細胞系譜2.png|thumb|350px|'''図2.脊椎動物の血球系における細胞系譜特異的な前駆細胞からの分化''']]
[[image:細胞系譜3.png|thumb|350px|'''図3.脊椎動物の中枢神経系における多能性共通前駆細胞からの分化モデル'''<br>文献<ref><pubmed> 24105342</pubmed></ref>を参考に作成。]]
[[image:細胞系譜3.png|thumb|350px|'''図3.脊椎動物の中枢神経系における多能性共通前駆細胞からの分化モデル''']]


 細胞系譜は、一個の[[wikipedia:ja:受精卵|受精卵]]が分裂して成体になるまでの細胞の系図である。この系図を用いて、発生の因果関係を表す。例えば、[[線虫]] ([[C. elegans|''C. elegans'']])の胚は、最初の1個の細胞(受精卵)が分裂すると、2個の細胞はABとP1と名付けられ、さらに4細胞期には、ABはABaとABpに、P1はP2とEMSと2つの[[wikipedia:ja:娘細胞|娘細胞]]に分裂する。それぞれの細胞は、将来が運命づけられており、成体のどの器官になるか決定されている。EMS細胞は、2つの娘細胞に分裂すると、一方のMS細胞は[[wikipedia:ja:筋肉|筋肉]]などになり、もうひとつのE細胞は[[wikipedia:ja:腸|腸]]の[[元祖細胞]]となって腸のすべての細胞を作り出すが、別の組織にはならない。
 細胞系譜は、一個の[[wikipedia:ja:受精卵|受精卵]]が分裂して成体になるまでの細胞の系図である。この系図を用いて、発生の因果関係を表す。例えば、[[線虫]] ([[C. elegans|''C. elegans'']])の胚は、最初の1個の細胞(受精卵)が分裂すると、2個の細胞はABとP1と名付けられ、さらに4細胞期には、ABはABaとABpに、P1はP2とEMSと2つの[[wikipedia:ja:娘細胞|娘細胞]]に分裂する。それぞれの細胞は、将来が運命づけられており、成体のどの器官になるか決定されている。EMS細胞は、2つの娘細胞に分裂すると、一方のMS細胞は[[wikipedia:ja:筋肉|筋肉]]などになり、もうひとつのE細胞は[[wikipedia:ja:腸|腸]]の[[元祖細胞]]となって腸のすべての細胞を作り出すが、別の組織にはならない。


 受精卵が成体の各器官を正しく構成する仕組みは、細胞間の相互作用によってコントロールされる。例えば上述のP2細胞が、シグナル分子の[[Wnt]]タンパク質を発現し、EMS細胞の[[Wnt#受容体|Wnt受容体]]に作用して、EMS細胞はP2と接触した場所に基づいて極性化し、[[細胞分裂|有糸分裂]][[wikipedia:ja:紡錘体|紡錘体]]の向きを制御する。その結果、P1に近い娘細胞がE細胞になり、遠い娘細胞がMS細胞になる。このように、発生学の顕微手術で発生の仕組みを調べ、遺伝子クローニングと配列決定で分子機構を明らかにすることによって、発生の機構の解明が飛躍的に進歩している。線虫に関しては、すべての細胞系譜が明らかになっている(図1)。
 受精卵が成体の各器官を正しく構成する仕組みは、細胞間の相互作用によってコントロールされる。例えば上述のP2細胞が、シグナル分子の[[Wnt]]タンパク質を発現し、EMS細胞の[[Wnt#受容体|Wnt受容体]]に作用して、EMS細胞はP2と接触した場所に基づいて極性化し、[[細胞分裂|有糸分裂]][[wikipedia:ja:紡錘体|紡錘体]]の向きを制御する。その結果、P2に近い娘細胞がE細胞になり、遠い娘細胞がMS細胞になる。このように、発生学の顕微手術で発生の仕組みを調べ、遺伝子クローニングと配列決定で分子機構を明らかにすることによって、発生の機構の解明が飛躍的に進歩している。線虫に関しては、すべての細胞系譜が明らかになっている(図1)。


 興味深いことに、発生学における細胞系譜(個体発生)のダイアグラムは、[[wikipedia:ja:進化生物学|進化生物学]]の系統樹(進化ダイアグム:系統発生)と形状が似通っている。しかしながら、進化生物学者(Evolutionary Biologist)は10年から10億年の時間を考え、発生生物学者(Developmental Biologist)は秒単位からせいぜい1ヶ月くらいに起こる生物現象を扱う。進化学と発生学との研究とは、ものの見方が大きく違う、似て非なるものと従来考えられてきた。ところが近年、発生に関わる遺伝子の働きの生物間の共通性が発見されると、両学問が合体して、進化発生学(Evo-Devo)という革命的な学問分野の発展が生じた。
 線虫では明確な細胞系譜が存在し、脊椎動物の血球系などでも特定の細胞種を生み出す細胞系譜特異的な前駆細胞(lineage-specific progenitor cell)が存在する(図2)。一方、哺乳類の中枢神経系の細胞分化に関しては、神経細胞とグリア細胞が同一の前駆細胞から分化してくるという一元説(一元論)(Schaper, 1897)と、両者が異なる前駆細胞(細胞系譜特異的な前駆細胞)に由来するという二元説(二元論)(His, 1889)が19世紀より提唱され議論されてきた。後者には、発生の比較的初期から神経前駆細胞とグリア前駆細胞の二種類が存在するというHisが提唱した二元説と比較的後期に二種類存在するとした新二元説が知られている。近年では、網膜においてレトロウイルス(Turner and Cepko, 1987)や蛍光物質(Wetts and Fraser, 1988)などを用いた細胞系譜解析(cell lineage analysis)により、神経細胞とグリア細胞が多能性の共通前駆細胞(multipotential common progenitor cell)から分化することが明らかとなり、引き続き脳の細胞系譜に関しても同様の結果(Walsh and Cepko 1988; Williams et al., 1991)が報告されたことから、一元説が支持されるようになった。最近の遺伝子組換えマウスを用いた大脳皮質の細胞系譜解析からも一元説が支持されている(Gao et al., 2014)。発生過程において、多能性共通前駆細胞は、発生の比較的早期には主に神経細胞を後期には主にグリア細胞を生み出すというステージによる分化細胞の種類の違いがある。この現象に関しては、多能性共通前駆細胞が時間経過とともに次第に多分化能を喪失し、発生後期のステージではグリア細胞のみが分化する状態になると考えられている(Cepko 1996)。発生のステージごとにどの種類の細胞が分化してくるかは各前駆細胞ごとに明確に決まっているわけではないが、ステージごとに分化してくる細胞の種類の傾向は存在し、神経細胞は主に前期〜中期にグリア細胞は主に後期に分化してくることが知られている(図3)。
 
 線虫は明確な細胞系譜が存在し、脊椎動物の血球系などでも特定の細胞種を生み出す細胞系譜特異的な前駆細胞(lineage-specific progenitor cell)が存在する(図2)。一方、哺乳類の中枢神経系の細胞分化に関しては、神経細胞とグリア細胞が同一の前駆細胞から分化してくるという一元説(一元論)(Schaper, 1897)と、両者が異なる前駆細胞(細胞系譜特異的な前駆細胞)に由来するという二元説(二元論)(His, 1889)が19世紀より提唱され議論されてきた。後者には、発生の比較的初期から神経前駆細胞とグリア前駆細胞細胞の二種類が存在するというHisが提唱した二元説と比較的後期に二種類存在するとした新二元説が知られている。近年では、網膜においてレトロウイルス(Turner and Cepko, 1987)や蛍光物質(Wetts and Fraser, 1988)などを用いた細胞系譜解析(cell lineage analysis)により、神経細胞とグリア細胞が多能性の共通前駆細胞(multipotential common progenitor cell)から分化することが明らかとなり、引き続き脳の細胞系譜に関しても同様の結果(Walsh and Cepko 1988; Williams et al., 1991)が報告されたことから、一元説が支持されるようになった。最近の遺伝子組換えマウスを用いた大脳皮質の細胞系譜解析からも一元説が支持されている(Gao et al., 2014)。発生過程において、多能性共通前駆細胞は、発生の比較的早期には主に神経細胞を後期には主にグリア細胞を生み出すというステージによる分化細胞の種類の違いがある。この現象に関しては、多能性共通前駆細胞が時間経過とともに次第に多分化能を喪失し、発生後期のステージではグリア細胞のみが分化する状態になると考えられている(Cepko 1996)。発生のステージごとにどの種類の細胞が分化してくるかは各前駆細胞ごとに明確に決まっているわけではないが、ステージごとに分化してくる細胞の種類の傾向は存在し、神経細胞は主に前期〜中期にグリア細胞は主に後期に分化してくることが知られている(図3)。




26行目: 24行目:


==参考文献==
==参考文献==
<references />
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589-595.
  2. '''Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D'''<br>   Cell fate determination in the vertebrate retina. <br>   ''Proc Natl Acad Sci USA'' 1996 93:589-595.
 
Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons BD, Luo L, Hippenmeyer S, Shi SH. (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159:775-788.
 
His W (1889) Die neuroblastern und deren Entstehung in embryonalen. Mark. Arch. Anat. Physiol. 249-300.
 
Schaper (1897) Die fruhesten differnzierungs vorgange im central nervensystem. Arch. Entwicki. Mech. Orig. 5:81-132.


  3. '''Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R,<br>   Chugh K, Kodish O, Huang K, Simons BD, Luo L, Hippenmeyer S, Shi SH.'''<br>   Deterministic progenitor behavior and unitary production of neurons in the neocortex. <br>   ''Cell'' 2014 159:775-788.  
Turner DL and Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131-136.


  4. '''His W'''<br>   Die Neuroblastern und deren Entstehung in embryonalen Mark. <br>   ''Arch. Anat. Physiol.'' 1889 5: 249-300.
Walsh C and Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241:1342-1345.


  5. '''Schaper, A.'''<br>   Die frühesten Differnzierungsvorgänge im Centralnervensystem. <br>   ''Arch. Entwickl. Mech. Orig.'' 1897 5:81-132.
Wetts R and Fraser SE (1988) Mulipotent precursors can give rise to all major cell types of frog retina. Science 239:1142-1145.


  6. '''Turner DL and Cepko CL'''<br>   A common progenitor for neurons and glia persists in rat retina late in development. <br>   ''Nature'' 1987 328:131-136.


  7. '''Walsh C and Cepko CL''' <br>   Clonally related cortical cells show several migration patterns. <br>   ''Science'' 1988 241:1342-1345.


  8. '''Wetts R and Fraser SE'''<br>   Mulipotent precursors can give rise to all major cell types of frog retina.<br>   ''Science'' 1988 239:1142-1145.
(編集部コメント:参考文献をお願いいたします)

2015年3月10日 (火) 19:25時点における版

古川 貴久
大阪大学蛋白質研究所 分子発生学教室
DOI:10.14931/bsd.3184 原稿受付日:2013年1月24日 原稿完成日:2015年月日
担当編集委員:村上 富士夫(大阪大学 大学院生命機能研究科)

英語名:cell lineage 独:Zelllinie 仏:lignée cellulaire

図1.線虫の細胞系譜
図2.脊椎動物の血球系における細胞系譜特異的な前駆細胞からの分化
図3.脊椎動物の中枢神経系における多能性共通前駆細胞からの分化モデル

 細胞系譜は、一個の受精卵が分裂して成体になるまでの細胞の系図である。この系図を用いて、発生の因果関係を表す。例えば、線虫 (C. elegans)の胚は、最初の1個の細胞(受精卵)が分裂すると、2個の細胞はABとP1と名付けられ、さらに4細胞期には、ABはABaとABpに、P1はP2とEMSと2つの娘細胞に分裂する。それぞれの細胞は、将来が運命づけられており、成体のどの器官になるか決定されている。EMS細胞は、2つの娘細胞に分裂すると、一方のMS細胞は筋肉などになり、もうひとつのE細胞は元祖細胞となって腸のすべての細胞を作り出すが、別の組織にはならない。

 受精卵が成体の各器官を正しく構成する仕組みは、細胞間の相互作用によってコントロールされる。例えば上述のP2細胞が、シグナル分子のWntタンパク質を発現し、EMS細胞のWnt受容体に作用して、EMS細胞はP2と接触した場所に基づいて極性化し、有糸分裂紡錘体の向きを制御する。その結果、P2に近い娘細胞がE細胞になり、遠い娘細胞がMS細胞になる。このように、発生学の顕微手術で発生の仕組みを調べ、遺伝子クローニングと配列決定で分子機構を明らかにすることによって、発生の機構の解明が飛躍的に進歩している。線虫に関しては、すべての細胞系譜が明らかになっている(図1)。

 線虫では明確な細胞系譜が存在し、脊椎動物の血球系などでも特定の細胞種を生み出す細胞系譜特異的な前駆細胞(lineage-specific progenitor cell)が存在する(図2)。一方、哺乳類の中枢神経系の細胞分化に関しては、神経細胞とグリア細胞が同一の前駆細胞から分化してくるという一元説(一元論)(Schaper, 1897)と、両者が異なる前駆細胞(細胞系譜特異的な前駆細胞)に由来するという二元説(二元論)(His, 1889)が19世紀より提唱され議論されてきた。後者には、発生の比較的初期から神経前駆細胞とグリア前駆細胞の二種類が存在するというHisが提唱した二元説と比較的後期に二種類存在するとした新二元説が知られている。近年では、網膜においてレトロウイルス(Turner and Cepko, 1987)や蛍光物質(Wetts and Fraser, 1988)などを用いた細胞系譜解析(cell lineage analysis)により、神経細胞とグリア細胞が多能性の共通前駆細胞(multipotential common progenitor cell)から分化することが明らかとなり、引き続き脳の細胞系譜に関しても同様の結果(Walsh and Cepko 1988; Williams et al., 1991)が報告されたことから、一元説が支持されるようになった。最近の遺伝子組換えマウスを用いた大脳皮質の細胞系譜解析からも一元説が支持されている(Gao et al., 2014)。発生過程において、多能性共通前駆細胞は、発生の比較的早期には主に神経細胞を後期には主にグリア細胞を生み出すというステージによる分化細胞の種類の違いがある。この現象に関しては、多能性共通前駆細胞が時間経過とともに次第に多分化能を喪失し、発生後期のステージではグリア細胞のみが分化する状態になると考えられている(Cepko 1996)。発生のステージごとにどの種類の細胞が分化してくるかは各前駆細胞ごとに明確に決まっているわけではないが、ステージごとに分化してくる細胞の種類の傾向は存在し、神経細胞は主に前期〜中期にグリア細胞は主に後期に分化してくることが知られている(図3)。


関連項目

(編集部コメント:ございましたらご指摘下さい)

参考文献

Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589-595.

Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons BD, Luo L, Hippenmeyer S, Shi SH. (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159:775-788.

His W (1889) Die neuroblastern und deren Entstehung in embryonalen. Mark. Arch. Anat. Physiol. 249-300.

Schaper (1897) Die fruhesten differnzierungs vorgange im central nervensystem. Arch. Entwicki. Mech. Orig. 5:81-132.

Turner DL and Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131-136.

Walsh C and Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241:1342-1345.

Wetts R and Fraser SE (1988) Mulipotent precursors can give rise to all major cell types of frog retina. Science 239:1142-1145.


(編集部コメント:参考文献をお願いいたします)