「細胞質ポリアデニル化要素結合タンパク質」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(同じ利用者による、間の1版が非表示)
14行目: 14行目:
 CPEBは卵母細胞の成熟過程だけでなく、[[精子]]形成にも必要とされることが明らかにされ<ref name=Luitjens2000><pubmed>11040214</pubmed></ref>、[[生殖細胞]]における重要な[[翻訳制御因子]]として、その分子制御機構の解明が進められてきた。
 CPEBは卵母細胞の成熟過程だけでなく、[[精子]]形成にも必要とされることが明らかにされ<ref name=Luitjens2000><pubmed>11040214</pubmed></ref>、[[生殖細胞]]における重要な[[翻訳制御因子]]として、その分子制御機構の解明が進められてきた。


 その後、CPEBは神経系においても高発現し、シナプス局所へのmRNA輸送とシナプス刺激に応じた特異的mRNAのポリA鎖伸長と翻訳促進を担うことが明らかにされ<ref name=Huang2002><pubmed>11980711</pubmed></ref><ref name=Huang2003><pubmed>12629046</pubmed></ref><ref name=Udagawa2012><pubmed>22727665</pubmed></ref>、さらに、[[シナプス可塑性]]や[[学習]]と[[記憶]]にもCPEBが重要な役割を担うことが示された<ref name=Alarcon2004><pubmed>15169862</pubmed></ref><ref name=Berger-Sweeney2006><pubmed>16452649</pubmed></ref>。CPEB(後に、[[CPEB1]]と遺伝子名が変更)とCPEBファミリータンパク質は、生殖系と神経系以外にも、[[細胞老化]]、[[がん]]、[[ストレス応答]]、[[器官形成]]などの様々な局面で働くことが現在までに報告されており、[[脊椎動物]]のmRNAの20-30%がCPEsを介した翻訳制御を受けると推定されている。<ref name=Groisman2006><pubmed>17015432</pubmed></ref><ref name=Burns2011><pubmed>21478871</pubmed></ref><ref name=Nagaoka2012><pubmed>22334078</pubmed></ref><ref name=Davidson2016><pubmed>26947065</pubmed></ref><ref name=Calderone2016><pubmed>26627607</pubmed></ref><ref name=Maillo2017><pubmed>28092655</pubmed></ref><ref name=Pascual2020><pubmed>32440535</pubmed></ref><ref name=Pique2008><pubmed>18267074</pubmed></ref>。
 その後、CPEBは神経系においても高発現し、シナプス局所へのmRNA輸送とシナプス刺激に応じた特異的mRNAのポリA鎖伸長と翻訳促進を担うことが明らかにされ<ref name=Huang2002><pubmed>11980711</pubmed></ref><ref name=Huang2003><pubmed>12629046</pubmed></ref><ref name=Udagawa2012><pubmed>22727665</pubmed></ref>、さらに、[[シナプス可塑性]]や[[学習]]と[[記憶]]にもCPEBが重要な役割を担うことが示された<ref name=Alarcon2004><pubmed>15169862</pubmed></ref><ref name=Berger-Sweeney2006><pubmed>16452649</pubmed></ref>。CPEB(後に、[[CPEB1]]と遺伝子名が変更)とCPEBファミリータンパク質は、生殖系と神経系以外にも、[[細胞老化]]、[[がん]]、[[ストレス応答]]、[[器官形成]]などの様々な局面で働くことが現在までに報告されており、[[脊椎動物]]のmRNAの20-30%がCPEsを介した翻訳制御を受けると推定されている<ref name=Groisman2006><pubmed>17015432</pubmed></ref><ref name=Burns2011><pubmed>21478871</pubmed></ref><ref name=Nagaoka2012><pubmed>22334078</pubmed></ref><ref name=Davidson2016><pubmed>26947065</pubmed></ref><ref name=Calderone2016><pubmed>26627607</pubmed></ref><ref name=Maillo2017><pubmed>28092655</pubmed></ref><ref name=Pascual2020><pubmed>32440535</pubmed></ref><ref name=Pique2008><pubmed>18267074</pubmed></ref>。
[[ファイル:Udagawa CPEB Fig1.png|サムネイル|'''図1. CPEBファミリータンパク質の系統樹'''<br>MEGA11により作成したマウス、アフリカツメガエル、ショウジョウバエ、アメフラシのCPEBタンパク質の最尤法系統樹。CPEB 1サブファミリーにはマウスCPEB1(MmCPEB)、アフリカツメガエルCPEB1(XtCPEB)、ショウジョウバエOrb(DmOrb)、アメフラシCPEB(ApCPEB)が含まれ、それ以外のCPEBタンパク質はすべてCPEB2サブファミリーに含まれる。]]
[[ファイル:Udagawa CPEB Fig1.png|サムネイル|'''図1. CPEBファミリータンパク質の系統樹'''<br>MEGA11により作成したマウス、アフリカツメガエル、ショウジョウバエ、アメフラシのCPEBタンパク質の最尤法系統樹。CPEB 1サブファミリーにはマウスCPEB1(MmCPEB)、アフリカツメガエルCPEB1(XtCPEB)、ショウジョウバエOrb(DmOrb)、アメフラシCPEB(ApCPEB)が含まれ、それ以外のCPEBタンパク質はすべてCPEB2サブファミリーに含まれる。]]
[[ファイル:Udagawa CPEB Fig2.png|サムネイル|'''図2. CPEBファミリータンパク質の一次構造'''<br>ヒトのCPEBファミリータンパク質CPEB1-4の一次構造。CPEB1のN末端側には翻訳抑制型から翻訳促進型への複合体の変換に必要なリン酸化セリン残基がある。CPEB2-4のN末端側には明確なドメインがなく、液-液相分離やプリオン様性質に必要な天然変性領域が含まれる。C末端側には全てのCPEBファミリータンパク質に保存された2つのRNA結合ドメイン(RRM1とRRM2)と2つのZnイオンが配位する配列(ZZ domain)が存在する。]]
[[ファイル:Udagawa CPEB Fig2.png|サムネイル|'''図2. CPEBファミリータンパク質の一次構造'''<br>ヒトのCPEBファミリータンパク質CPEB1-4の一次構造。CPEB1のN末端側には翻訳抑制型から翻訳促進型への複合体の変換に必要なリン酸化セリン残基がある。CPEB2-4のN末端側には明確なドメインがなく、液-液相分離やプリオン様性質に必要な天然変性領域が含まれる。C末端側には全てのCPEBファミリータンパク質に保存された2つのRNA結合ドメイン(RRM1とRRM2)と2つのZnイオンが配位する配列(ZZ domain)が存在する。]]
53行目: 53行目:
 しかしながら、プリオンドメインが別のタンパク質との相互作用を介して機能している可能性もあり、プリオン仮説についてはさらなる検証が必要と考えられる。Orb2によるオリゴマー化を介したポリA鎖制御機構についても慎重な検証が必要である。なお、哺乳類のCPEB1ではプリオン様の性質は示されておらず、哺乳類CPEB1による翻訳制御と学習と記憶の制御機構がアメフラシのApCPEBによるポリA鎖制御機構と同様であるかは明らかでない。
 しかしながら、プリオンドメインが別のタンパク質との相互作用を介して機能している可能性もあり、プリオン仮説についてはさらなる検証が必要と考えられる。Orb2によるオリゴマー化を介したポリA鎖制御機構についても慎重な検証が必要である。なお、哺乳類のCPEB1ではプリオン様の性質は示されておらず、哺乳類CPEB1による翻訳制御と学習と記憶の制御機構がアメフラシのApCPEBによるポリA鎖制御機構と同様であるかは明らかでない。


 一方、哺乳類のCPEB2-4はN末端ドメインを介して液-液相分離による液滴を形成し、その機能に重要な役割を果たす可能性が指摘されている<ref name=Guillen-Boixet2016><pubmed>27802129</pubmed></ref>。CPEB4はN末端の天然変性領域を介して液-液相分離による液滴を形成するが、細胞周期の[[M期]]において[[Cdk1]]および[[Erk2]]によりN末端ドメインが過リン酸化されるとモノマー型に変換され活性化されることが報告されている<ref name=Guillen-Boixet2016><pubmed>27802129</pubmed></ref>22。CPEB2-4による翻訳制御機構の詳細はまだ明らかでないが、[[CPEB3]]ノックアウトマウスは海馬依存的な学習と記憶を亢進させることが報告されている<ref name=Chao2013><pubmed>24155305</pubmed></ref>。
 一方、哺乳類のCPEB2-4はN末端ドメインを介して液-液相分離による液滴を形成し、その機能に重要な役割を果たす可能性が指摘されている<ref name=Guillen-Boixet2016><pubmed>27802129</pubmed></ref>。CPEB4はN末端の天然変性領域を介して液-液相分離による液滴を形成するが、細胞周期の[[M期]]において[[Cdk1]]および[[Erk2]]によりN末端ドメインが過リン酸化されるとモノマー型に変換され活性化されることが報告されている<ref name=Guillen-Boixet2016><pubmed>27802129</pubmed></ref>。CPEB2-4による翻訳制御機構の詳細はまだ明らかでないが、[[CPEB3]]ノックアウトマウスは海馬依存的な学習と記憶を亢進させることが報告されている<ref name=Chao2013><pubmed>24155305</pubmed></ref>。


===その他===
===その他===
63行目: 63行目:


===ハンチントン病===
===ハンチントン病===
 [[ハンチントン病]]患者やマウスモデルの[[線条体]]ではCPEB1の発現が上昇し、CPEB4の発現が低下していることが報告されている<ref name=Pico2021><pubmed>34586830</pubmed></ref>。この発現変化により全転写産物の17.3%のポリA鎖長が変化し、多くの[[神経変性疾患]]関連因子の発現が変動していることが明らかにされた。興味深いことに、このCPEB1 ,4の発現変化により別の神経疾患である[[ビオチン]]-[[チアミン]]応答性[[大脳基底核]]疾患の原因となる[[SLC19C]]の発現が低下することが見出された。さらに、ハンチントン病マウスモデルにチアミンピロリン酸を処理することにより一部のハンチントン病様表現系が改善されることが明らかにされた<ref name=Pico2021 />36。
 [[ハンチントン病]]患者やマウスモデルの[[線条体]]ではCPEB1の発現が上昇し、CPEB4の発現が低下していることが報告されている<ref name=Pico2021><pubmed>34586830</pubmed></ref>。この発現変化により全転写産物の17.3%のポリA鎖長が変化し、多くの[[神経変性疾患]]関連因子の発現が変動していることが明らかにされた。興味深いことに、このCPEB1 ,4の発現変化により別の神経疾患である[[ビオチン]]-[[チアミン]]応答性[[大脳基底核]]疾患の原因となる[[SLC19C]]の発現が低下することが見出された。さらに、ハンチントン病マウスモデルにチアミンピロリン酸を処理することにより一部のハンチントン病様表現系が改善されることが明らかにされた<ref name=Pico2021 />


===その他===
===その他===