「細胞骨格」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:
== 歴史 ==
== 歴史 ==


細胞骨格蛋白の研究は、常に形態学的研究の進展とともにあった。真核細胞の細胞質にはトライトン(Triton)不溶性の線維構造があると分かり、これが“細胞骨格”分画と呼ばれ、電子顕微鏡等による研究が行われるようになった。生物電子顕微鏡のパイオニアであり細胞生物学の創始者のひとりであるK.Porterは臨界点乾燥法を用いて細胞質には複雑な網目状の構造 microtrabecula があるとした。現在はこの説は退けられているが、細胞質内の蛋白性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(6nm) の三種類に分類されている。微細線維(マイクロフィラメント)にはミオシン頭部が結合するので、これが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメント microfilaments という呼称を用いる)。一方、ミオシン頭部が全く結合しない中間径フィラメントが別に存在することが確立した。また、1970年代以降、抗体を用いた蛍光抗体光学顕微鏡法は、細胞骨格蛋白の細胞内の3次元構築を明らかにした。1980年代、急速凍結ディープエッチ法は電子顕微鏡レベルで細胞骨格の三次元的構成を示した。生化学的研究の進展は、その構成蛋白および関連蛋白を明らかにし、それら線維の重合脱重を試験管内で再現した。これに対応し、蛍光(GFPを含む)標識した構成蛋白とビデオ顕微鏡を用いて生細胞内での細胞骨格成分の動態が観察できるようになった。ビデオ顕微鏡は、この分野の大きな進展である軸索輸送のモーター分子であるキネシンの発見(1985)をもたらした。昔から知られてきたミオシンとダイニンについても、新たな類縁蛋白群が発見された。このモーター分子のアッセイや細胞骨格の重合脱重合のメカニズムの研究に、一分子イメージングなど光学顕微鏡技術の進展が大きく寄与している。  
細胞骨格蛋白の研究は、常に形態学的研究の進展とともにあった。真核細胞の細胞質にはトライトン(Triton)不溶性の線維構造があると分かり、これが“細胞骨格”分画と呼ばれ、電子顕微鏡等による研究が行われるようになった。生物電子顕微鏡のパイオニアであり細胞生物学の創始者のひとりであるK.Porterは臨界点乾燥法を用いて細胞質には複雑な網目状の構造 microtrabecula があるとした。現在はこの説は退けられているが、細胞質内の蛋白性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(6nm) の三種類に分類されている。微細線維(マイクロフィラメント)にはミオシン頭部が結合するので、これが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメントという呼称を用いる)。一方、ミオシン頭部が全く結合しない中間径フィラメントが別に存在することが確立した。また、1970年代以降、抗体を用いた蛍光抗体光学顕微鏡法は、細胞骨格蛋白の細胞内の3次元構築を明らかにした。1980年代、急速凍結ディープエッチ法は電子顕微鏡レベルで細胞骨格の三次元的構成を示した。生化学的研究の進展は、その構成蛋白および関連蛋白を明らかにし、それら線維の重合脱重を試験管内で再現した。これに対応し、蛍光(GFPを含む)標識した構成蛋白とビデオ顕微鏡を用いて生細胞内での細胞骨格成分の動態が観察できるようになった。ビデオ顕微鏡は、この分野の大きな進展である軸索輸送のモーター分子であるキネシンの発見(1985)をもたらした。昔から知られてきたミオシンとダイニンについても、新たな類縁蛋白群が発見された。このモーター分子のアッセイや細胞骨格の重合脱重合のメカニズムの研究に、一分子イメージングなど光学顕微鏡技術の進展が大きく寄与している。  


<br>
<br>
113

回編集