「脂質ラフト」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
26行目: 26行目:
== ラフト局在と機能的意義 ==
== ラフト局在と機能的意義 ==


 ラフトと非ラフトとでは膜の脂質組成や物性(膜の厚さや膜内分子の拡散速度など)に違いがあるため、膜タンパク質はそれぞれの膜領域に対して異なる親和性を示す。ラフトに局在するタンパク質には次の2つのタイプが知られている。①脂質修飾を受けたタンパク質と②膜貫通領域(transmembrane domain; TMD)がラフトに親和性をもつタンパク質である。①に関係する脂質修飾には、アシル化([[ミリストイル化]]、[[パルミトイル化]])やGPIアンカー付加などがあり、反対にプレニル化(ファルネシル化、ゲラニルゲラニル化)を受けたタンパク質はラフトから排除される傾向があることが報告されている。一方、②については、特にTMDの長い膜タンパク質が疎水性部分の露出を避けるため、膜の厚いラフト環境を好むことが推測されている。実際、細胞膜に存在する膜タンパク質では、ゴルジ体にあるタンパク質よりもTMDが長い傾向がある<ref><pubmed>20603021</pubmed></ref>。脂質ラフトの重要な機能は、これらのタンパク質を選別して特定の領域内に分布させることにより、分子間相互作用を効率化することであると考えられる。また、ある種のタンパク質では脂質環境の違いによって膜タンパク質のコンフォメーションが変化し、活性が変化すると考えられている。異なるスフィンゴ脂質が互いに排他的なドメインを形成している場合も明らかになっており<ref><pubmed>17392511</pubmed></ref>、異なる種類のラフトが特定のタンパク質の分子機能の制御に関わる可能性がある。<br>
 ラフトと非ラフトとでは膜の脂質組成や物性(膜の厚さや膜内分子の拡散速度など)に違いがあるため、膜タンパク質はそれぞれの膜領域に対して異なる親和性を示す。ラフトに局在するタンパク質には次の2つのタイプが知られている。①脂質修飾を受けたタンパク質と②膜貫通領域(transmembrane domain; TMD)がラフトに親和性をもつタンパク質である。①に関係する脂質修飾には、アシル化([[ミリストイル化]]、[[パルミトイル化]])やGPIアンカー付加などがあり、反対に[[wikipedia:jp:プレニル化|プレニル化]](ファルネシル化、ゲラニルゲラニル化)を受けたタンパク質はラフトから排除される傾向があることが報告されている。一方、②については、特にTMDの長い膜タンパク質が疎水性部分の露出を避けるため、膜の厚いラフト環境を好むことが推測されている。実際、細胞膜に存在する膜タンパク質では、ゴルジ体にあるタンパク質よりもTMDが長い傾向がある<ref><pubmed>20603021</pubmed></ref>。脂質ラフトの重要な機能は、これらのタンパク質を選別して特定の領域内に分布させることにより、分子間相互作用を効率化することであると考えられる。また、ある種のタンパク質では脂質環境の違いによって膜タンパク質のコンフォメーションが変化し、活性が変化すると考えられている。異なるスフィンゴ脂質が互いに排他的なドメインを形成している場合も明らかになっており<ref><pubmed>17392511</pubmed></ref>、異なる種類のラフトが特定のタンパク質の分子機能の制御に関わる可能性がある。<br>
 ラフトが関与する具体的な生命現象としては、IgE受容体やT細胞受容体 (TCR)によるシグナル伝達複合体の形成の例がよく知られている。TCRの場合には、抗原提示細胞から提示されたMHCリガンドとの結合により、TCRの近傍にLckやLATなどラフト親和性をもったタンパク質の一群がリクルートされる。この構造体は免疫シナプスと呼ばれ、周囲の膜環境は、膜環境感受性色素であるLaurdanを用いたイメージング法によりl<sub>o</sub>相に類似した性質をもつことが明らかになっている<ref><pubmed>19177148</pubmed></ref>。<br>
 ラフトが関与する具体的な生命現象としては、IgE受容体やT細胞受容体 (TCR)によるシグナル伝達複合体の形成の例がよく知られている。TCRの場合には、抗原提示細胞から提示されたMHCリガンドとの結合により、TCRの近傍にLckやLATなどラフト親和性をもったタンパク質の一群がリクルートされる。この構造体は免疫シナプスと呼ばれ、周囲の膜環境は、膜環境感受性色素であるLaurdanを用いたイメージング法によりl<sub>o</sub>相に類似した性質をもつことが明らかになっている<ref><pubmed>19177148</pubmed></ref>。<br>
 また脂質ラフトの病態生理学的な役割についても近年注目されている。最も頻度の高い神経変性疾患であるアルツハイマー病の発症には、I型膜貫通タンパク質APPが&beta;および&gamma;セクレターゼによる段階的切断を受けて生じるアミロイド&beta;ペプチド(A&beta;)が重要な役割を果たしている。これらのタンパク質群はいずれもDRMに分画されることが知られており、脂質ラフト局在とアミロイド産生の関連に興味がもたれる<ref><pubmed>20303415</pubmed></ref>。  
 また脂質ラフトの病態生理学的な役割についても近年注目されている。最も頻度の高い神経変性疾患であるアルツハイマー病の発症には、I型膜貫通タンパク質APPが&beta;および&gamma;セクレターゼによる段階的切断を受けて生じるアミロイド&beta;ペプチド(A&beta;)が重要な役割を果たしている。これらのタンパク質群はいずれもDRMに分画されることが知られており、脂質ラフト局在とアミロイド産生の関連に興味がもたれる<ref><pubmed>20303415</pubmed></ref>。  
100

回編集